Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 7;91(12):5267–5271. doi: 10.1073/pnas.91.12.5267

Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations.

H Rosenboom 1, M Lindau 1
PMCID: PMC43975  PMID: 8202480

Abstract

An increase in free Ca2+ triggers exocytosis in pituitary nerve terminals leading to an increase in membrane area and membrane capacitance. When Ca2+ is increased by step depolarization, an instantaneous capacitance increase during the first 80 ms is followed by a slow increase extending over several seconds. We measured capacitance changes associated with exocytosis and endocytosis in single pituitary nerve terminals internally perfused with high Ca2+. At 50 microM Ca2+ the capacitance increased by up to 2%/s, similar to the slow phase observed during depolarization. Our results indicate that at the site of fusion very high Ca2+ is required. Following exocytosis, large downward capacitance steps were measured, reflecting endocytosis of large vacuoles. These events were not abrupt but reflected a gradual decrease of fission pore conductance from 8 nS to < 40 pS during 500 ms, revealing the dynamics of individual fission pore closures. Above 300 pS, narrowing of the endocytotic fission pore was approximately 10 times slower than the previously reported expansion of the exocytotic fusion pore. The transition between 300 pS and 0 pS took approximately 200 ms, whereas it has been reported that the exocytotic fusion pore measured in mast cells opens from 0 to 280 pS in < 100 microseconds. The time course of closing of the fission pore may be explained by an exponential decrease in pore diameter occurring at a constant rate.

Full text

PDF
5267

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W. Exocytosis. Annu Rev Physiol. 1990;52:607–624. doi: 10.1146/annurev.ph.52.030190.003135. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Knight D. E. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):83–103. doi: 10.1098/rstb.1981.0174. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Ravazzola M., Malaisse-Lagae F. Secretion-dependent uptake of extracellular fluid by the rat neurohypophysis. Nature. 1974 Jul 12;250(462):155–157. doi: 10.1038/250155a0. [DOI] [PubMed] [Google Scholar]
  4. Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  5. Cazalis M., Dayanithi G., Nordmann J. J. Hormone release from isolated nerve endings of the rat neurohypophysis. J Physiol. 1987 Sep;390:55–70. doi: 10.1113/jphysiol.1987.sp016686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceccarelli B., Hurlbut W. P. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev. 1980 Apr;60(2):396–441. doi: 10.1152/physrev.1980.60.2.396. [DOI] [PubMed] [Google Scholar]
  7. Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heuser J. E., Reese T. S. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol. 1981 Mar;88(3):564–580. doi: 10.1083/jcb.88.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knoll G., Plattner H., Nordmann J. J. Exo-endocytosis in isolated peptidergic nerve terminals occurs in the sub-second range. Biosci Rep. 1992 Dec;12(6):495–501. doi: 10.1007/BF01122037. [DOI] [PubMed] [Google Scholar]
  11. Lim N. F., Nowycky M. C., Bookman R. J. Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals. Nature. 1990 Mar 29;344(6265):449–451. doi: 10.1038/344449a0. [DOI] [PubMed] [Google Scholar]
  12. Lindau M., Nüsse O., Bennett J., Cromwell O. The membrane fusion events in degranulating guinea pig eosinophils. J Cell Sci. 1993 Jan;104(Pt 1):203–210. doi: 10.1242/jcs.104.1.203. [DOI] [PubMed] [Google Scholar]
  13. Lindau M., Stuenkel E. L., Nordmann J. J. Depolarization, intracellular calcium and exocytosis in single vertebrate nerve endings. Biophys J. 1992 Jan;61(1):19–30. doi: 10.1016/S0006-3495(92)81812-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindau M. Time-resolved capacitance measurements: monitoring exocytosis in single cells. Q Rev Biophys. 1991 Feb;24(1):75–101. doi: 10.1017/s0033583500003279. [DOI] [PubMed] [Google Scholar]
  15. Monck J. R., Alvarez de Toledo G., Fernandez J. M. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7804–7808. doi: 10.1073/pnas.87.20.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monck J. R., Fernandez J. M. The exocytotic fusion pore. J Cell Biol. 1992 Dec;119(6):1395–1404. doi: 10.1083/jcb.119.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nanavati C., Markin V. S., Oberhauser A. F., Fernandez J. M. The exocytotic fusion pore modeled as a lipidic pore. Biophys J. 1992 Oct;63(4):1118–1132. doi: 10.1016/S0006-3495(92)81679-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nordmann J. J., Artault J. C. Membrane retrieval following exocytosis in isolated neurosecretory nerve endings. Neuroscience. 1992 Jul;49(1):201–207. doi: 10.1016/0306-4522(92)90088-j. [DOI] [PubMed] [Google Scholar]
  20. Nordmann J. J. Ultrastructural morphometry of the rat neurohypophysis. J Anat. 1977 Feb;123(Pt 1):213–218. [PMC free article] [PubMed] [Google Scholar]
  21. Spruce A. E., Breckenridge L. J., Lee A. K., Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron. 1990 May;4(5):643–654. doi: 10.1016/0896-6273(90)90192-i. [DOI] [PubMed] [Google Scholar]
  22. Südhof T. C., Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron. 1991 May;6(5):665–677. doi: 10.1016/0896-6273(91)90165-v. [DOI] [PubMed] [Google Scholar]
  23. Watts C., Marsh M. Endocytosis: what goes in and how? J Cell Sci. 1992 Sep;103(Pt 1):1–8. doi: 10.1242/jcs.103.1.1a. [DOI] [PubMed] [Google Scholar]
  24. von Grafenstein H., Roberts C. S., Baker P. F. Kinetic analysis of the triggered exocytosis/endocytosis secretory cycle in cultured bovine adrenal medullary cells. J Cell Biol. 1986 Dec;103(6 Pt 1):2343–2352. doi: 10.1083/jcb.103.6.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES