Skip to main content
Photoacoustics logoLink to Photoacoustics
editorial
. 2015 Feb 2;3(1):1–2. doi: 10.1016/j.pacs.2015.01.002

“Contrast agents for optoacoustic imaging: design and biomedical applications”

Alexander A Oraevsky a,b,
PMCID: PMC4398807  PMID: 25893168

Abstract

Nanoparticles and molecular chromophores with strong optical absorption in the near-infrared spectral range can be used as contrast agents for optoacoustic (photoacoustic) imaging, thereby significantly enhancing sensitivity and enabling new applications of this novel and rapidly growing biomedical imaging technology.

Keywords: Optoacoustic, Photoacoustic, Ultrasonic, Nanoparticle, Molecular chromophore, Optothermal therapy


Optoacoustic Tomography (OAT) emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with laser pulses and detecting resulting ultrasound waves [1,2]. OAT takes advantage of spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient [3]. OAT was shown useful in both, preclinical research using small animal models and clinical applications [4–10]. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for biomedical optoacoustic imaging [11–13]. Advances in the area of plasmonic nanotechnology opened such opportunities for development of nanoparticle based contrast agents with exceptionally strong absorption in the near-infrared (NIR) spectral range for preclinical applications of optical and optoacoustic imaging [14]. The use of plasmon resonance absorption in metal nanoparticles has been invoked for a diverse range of in vivo and in vitro applications including imaging and monitoring of tissue, sensing of molecules, cells and harmful microorganisms [15–17] as well as selective optothermal therapy [18,19]. The very recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of biopolymers, melanin and indocyanine green) potentially applicable in clinical optoacoustic imaging [20–22]. It is noteworthy that molecular contrast agents being developed for optical imaging modalities (such as fluorescence imaging) are directly applicable to the optoacoustic imaging [23,24]. Furthermore, optoacoustic contrast agents can be combined with ultrasonic contrast agents for dual modality imaging [25–27]. One area of particular relevance to optoacoustic imaging is the enhancement of malignant tumor contrast relative to background normal tissue [28,29]. Once cancerous lesion is detected, it is only logical to use lasers and/or ultrasound for minimally invasive therapy of cancer [30–32]. Optoacoustic imaging systems can be used for molecular imaging and monitoring physiological processes in preclinical research applications using mouse models of cardiovascular and other diseases [33]. In addition, in combination with reporter genes, these systems offer promise for imaging genetic processes, monitoring the delivery of specific genes to target cells and visualizing the kinetics of therapeutic gene expression [34,35]. In order to increase efficiency and specificity of contrast agents and probes, they can be made smart and capable of controlled accumulation in the target cells [36] or activatable with external electromagnetic energy [37,38]. Recognizing the potential breakthroughs in optoacoustic imaging that can be achieved using variety of technological advances made in the past decade in the field of optical, optoacoustic and ultrasonic contrast agents, we invited the biomedical optics community and biomedical ultrasound community to join the bionanotechnology community and the optoacoustic imaging and sensing community by contributing to this special issue of Photoacoustics dedicated to contrast agents and their biomedical applications.

Alexander Oraevsky

Guest Editor

References

  • 1.Oraevsky A.A., Jacques S.L., Esenaliev R.O., Tittel F.K. Direct measurement of laser fluence distribution and optoacoustic imaging in heterogeneous tissues. Proc. SPIE. 1994;2323:250–258. [Google Scholar]
  • 2.Kruger R.A., Pingyu L., Fang Y., Appledorn C.R. Photoacoustic ultrasound–reconstruction tomography. Med. Phys. 1995;22(10):1605–1609. doi: 10.1118/1.597429. [DOI] [PubMed] [Google Scholar]
  • 3.Wang L.V., Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–1462. doi: 10.1126/science.1216210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brecht H.-P., Su R., Fronheiser M., Ermilov S.A., Conjusteau A., Oraevsky A.A. Whole body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Optics. 2009;14(6):0129061–129068. doi: 10.1117/1.3259361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602–631. doi: 10.1098/rsfs.2011.0028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Xia J., Wang L.V. Small-animal whole-body photoacoustic tomography: a review. IEEE Trans Biomed Eng. 2014;61(5):1380–1389. doi: 10.1109/TBME.2013.2283507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ntziachristos V., Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT) Chem Rev. 2010;110(5):2783–2794. doi: 10.1021/cr9002566. [DOI] [PubMed] [Google Scholar]
  • 8.Ermilov S.A., Khamapirad T., Conjusteau A., Lacewell R., Mehta K., Miller T., Leonard M.H., Oraevsky A.A. Laser Optoacoustic Imaging System for Detection of Breast Cancer. J Biomed Opt. 2009;14(2):024007. doi: 10.1117/1.3086616. (1-14) [DOI] [PubMed] [Google Scholar]
  • 9.Heijblom M., Piras D., Xia W., van Hespen J.C.G., Klaase J.M., van den Engh F.M., van Leeuwen T.G., Steenbergen W., Manohar S. Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements? Optics Express. 2012;20(11):11582–11597. doi: 10.1364/OE.20.011582. [DOI] [PubMed] [Google Scholar]
  • 10.Kruger R.A., Lam R.B., Reinecke D.R., Del Rio S.P., Doyle R.P. Photoacoustic angiography of the breast. Med. Phys. 2010;37:6096. doi: 10.1118/1.3497677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Razansky D., Deliolanis N.C., Vinegoni C., Ntziachristos V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharm Biotechnol. 2012;13(4):504–522. doi: 10.2174/138920112799436258. [DOI] [PubMed] [Google Scholar]
  • 12.Luke G.P., Yeager D., Emelianov S.Y. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng. 2012;40(2):422–437. doi: 10.1007/s10439-011-0449-4. [DOI] [PubMed] [Google Scholar]
  • 13.Kim C., Favazza C., Wang L.V. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010;110(5):2756–2782. doi: 10.1021/cr900266s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Oraevsky A.A. Gold and silver nanoparticles as contrast agents for optoacoustic imaging. Chapter 30. In: Wang L., editor. Photoacoustic imaging and spectroscopy. Taylor and Francis Group; New York: 2009. pp. 373–386. [Google Scholar]
  • 15.Webb J.A1, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6(5):2502–2530. doi: 10.1039/c3nr05112a. [DOI] [PubMed] [Google Scholar]
  • 16.Lu W., Huang Q., Ku G., Wen X., Zhou M., Guzatov D., Brecht H.-P., Su R., Oraevsky A.A., Wang L.V., Chun Li Photoacoustic Imaging of Living Mouse Brain Vasculature Using Hollow Gold Nanospheres. Biomaterials. 2010;31(3):348–355. doi: 10.1016/j.biomaterials.2009.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Conjusteau A., Maswadi S., Ermilov S., Brecht H.-P., Barsalou N., Glickman R., Oraevsky A. Detection of gold-nanorod targeted pathogens using optical and piezoelectric optoacoustic sensors: comparative study. Proc. SPIE. 2009;7177(71771P):1–10. [Google Scholar]
  • 18.Lapotko D., Lukianova E., Potapnev M., Aleinikova O., Oraevsky A.A. Laser Activated Nanothermolysis for Elimination of Tumor Cells. Cancer Lett. 2006;239(5):36–45. doi: 10.1016/j.canlet.2005.07.031. [DOI] [PubMed] [Google Scholar]
  • 19.Yasun E., Kang H., Erdal H., Cansiz S., Ocsoy I., Huang Y.F., Tan W. Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus. 2013;3(3):20130006. doi: 10.1098/rsfs.2013.0006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Yoon S.J., Mallidi S., Tam J.M., Tam J.O., Murthy A., Johnston K.P., Sokolov K.V., Emelianov S.Y. Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Lett. 2010;35(22):3751–3753. doi: 10.1364/OL.35.003751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Ju K.Y., Lee Y., Lee S., Park S.B., Lee J.K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical scavenging property. Biomacromolecules. 2011;12:625–632. doi: 10.1021/bm101281b. [DOI] [PubMed] [Google Scholar]
  • 22.Beziere N., Lozano N., Nunes A., Salichs J., Queiros D., Kostarelos K., Ntziachristos V. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT) Biomaterials. 2014;37C:415–424. doi: 10.1016/j.biomaterials.2014.10.014. [DOI] [PubMed] [Google Scholar]
  • 23.Beziere N., Ntziachristos V. Optoacoustic Imaging of Naphthalocyanine: Potential for contrast enhancement and therapy monitoring. J Nucl Med. 2014 doi: 10.2967/jnumed.114.147157. Dec 31. pii: jnumed.114.147157. [DOI] [PubMed] [Google Scholar]
  • 24.Razansky D., Deliolanis N.C., Vinegoni C., Ntziachristos V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharm Biotechnol. 2012;13(4):504–522. doi: 10.2174/138920112799436258. [DOI] [PubMed] [Google Scholar]
  • 25.Bouchard R., Sahin O., Emelianov S. Ultrasound-guided photoacoustic imaging: current state and future development. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(3):450–466. doi: 10.1109/TUFFC.2014.2930. [DOI] [PubMed] [Google Scholar]
  • 26.Wang Y.H., Liao A.H., Chen J.H., Wang C.R., Li P.C. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt. 2012;17(4):045001. doi: 10.1117/1.JBO.17.4.045001. [DOI] [PubMed] [Google Scholar]
  • 27.Jeon M., Song W., Huynh E., Kim J., Kim J., Helfield B.L., Leung B.Y., Goertz D.E., Zheng G., Oh J., Lovell J.F., Kim C. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt. 2014;19(1):16005. doi: 10.1117/1.JBO.19.1.016005. [DOI] [PubMed] [Google Scholar]
  • 28.Huina Wang, Chengbo Liu, Xiaojing Gong, Dehong Hu, Riqiang Lin, Zonghai Sheng, Cuifang Zheng, Meng Yan, Jingqin Chen, Lintao Caib, Liang Song In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale. 2014;6:14270–14279. doi: 10.1039/c4nr03949a. [DOI] [PubMed] [Google Scholar]
  • 29.Kimbrough C.W1, Hudson S2, Khanal A2, Egger M.E1, McNally L.R3. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J Surg Res. 2015;193(1):246–254. doi: 10.1016/j.jss.2014.06.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.de la Zerda A., Kim J.W., Galanzha E.I., Gambhir S.S., Zharov V.P. Advanced contrast nanoagents for photoacoustic molecular imaging: cytometry, blood test and photothermal theranostics. Contrast Media Mol Imaging. 2011;6(5):346–369. doi: 10.1002/cmmi.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Chen Y., Chen H., Shi J. Cancer therapy: nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv. Health Mater. 2015;4(1):157. doi: 10.1002/adhm.201400127. [DOI] [PubMed] [Google Scholar]
  • 32.Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23(3):217–228. doi: 10.1007/s10103-007-0470-x. [DOI] [PubMed] [Google Scholar]
  • 33.Rouleau L., Berti R., Ng V.W., Matteau-Pelletier C., Lam T., Saboural P., Kakkar A.K., Lesage F., Rhéaume E., Tardif J.C. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice. Contrast Media Mol Imaging. 2013;8(1):27–39. doi: 10.1002/cmmi.1491. [DOI] [PubMed] [Google Scholar]
  • 34.Paproski R.J., Heinmiller A., Wachowicz K., Zemp R.J. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci Rep. 2014;4:5329. doi: 10.1038/srep05329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Krumholz A., Vanvickle-Chavez S.J., Yao J., Fleming T.P., Gillanders W.E., Wang L.V. Photoacoustic microscopy of tyrosinase reporter gene in vivo. J Biomed Opt. 2011;16(8):080503. doi: 10.1117/1.3606568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Qu M., Mallidi S., Mehrmohammadi M., Truby R., Homan K., Joshi P., Chen Y.S., Sokolov K., Emelianov S. Magneto-photo-acoustic imaging. Biomed Opt Express. 2011;2(2):385–396. doi: 10.1364/BOE.2.000386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Melancon M.P., Zhou M., Li C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res. 2011 Oct 18;44(10):947–956. doi: 10.1021/ar200022e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Zhang L., Gao S., Zhang F., Yang K., Ma Q., Zhu L. Activatable hyaluronic Acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano. 2014;8(12):12250–12258. doi: 10.1021/nn506130t. [DOI] [PubMed] [Google Scholar]

Articles from Photoacoustics are provided here courtesy of Elsevier

RESOURCES