Abstract
The identification of transcripts from large genomic regions cloned in yeast artificial chromosomes (YACs) or cosmids continues to be a critical and often rate-limiting step in positional cloning of human disease genes. We have developed a PCR-based method for rapid and efficient generation of probes from YACs or cosmids that can be used for cDNA library screening. The method, which we call island rescue PCR (IRP), is based upon the observation that the 5' ends of many genes are associated with (G+C)-rich regions called CpG islands. In IRP, the YAC of interest is digested with a restriction enzyme that recognizes sequences of high CpG content, and vectorette linkers are ligated to the cleaved ends. The PCR is used to amplify the region extending from the cleaved restriction enzyme site to the nearest SINE (Alu) repeat. In many cases this product contains sequences from the 5' end of the associated gene. cDNA clones isolated with these products are then verified by mapping them back to the original YAC. The method allows rapid screening of > 500 kb of human genomic insert in one experiment, is tolerant of contaminating yeast sequences, and can also be applied to cosmid pools. In a control experiment, the method was able to identify cDNA clones for the neurofibromatosis type 1 (NF1) gene using a probe generated from a YAC in the region. Application of IRP has yielded nine other genes from YACs isolated from chromosome locations 4p16.3 and 17q21.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antequera F., Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11995–11999. doi: 10.1073/pnas.90.24.11995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aïssani B., Bernardi G. CpG islands, genes and isochores in the genomes of vertebrates. Gene. 1991 Oct 15;106(2):185–195. doi: 10.1016/0378-1119(91)90198-k. [DOI] [PubMed] [Google Scholar]
- Babitzke P., Kushner S. R. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):1–5. doi: 10.1073/pnas.88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates G. P., Valdes J., Hummerich H., Baxendale S., Le Paslier D. L., Monaco A. P., Tagle D., MacDonald M. E., Altherr M., Ross M. Characterization of a yeast artificial chromosome contig spanning the Huntington's disease gene candidate region. Nat Genet. 1992 Jun;1(3):180–187. doi: 10.1038/ng0692-180. [DOI] [PubMed] [Google Scholar]
- Breukel C., Wijnen J., Tops C., vd Klift H., Dauwerse H., Khan P. M. Vector-Alu PCR: a rapid step in mapping cosmids and YACs. Nucleic Acids Res. 1990 May 25;18(10):3097–3097. doi: 10.1093/nar/18.10.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duyk G. M., Kim S. W., Myers R. M., Cox D. R. Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8995–8999. doi: 10.1073/pnas.87.22.8995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Fu Y. H., Kuhl D. P., Pizzuti A., Pieretti M., Sutcliffe J. S., Richards S., Verkerk A. J., Holden J. J., Fenwick R. G., Jr, Warren S. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991 Dec 20;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
- Ginsburg D., Handin R. I., Bonthron D. T., Donlon T. A., Bruns G. A., Latt S. A., Orkin S. H. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985 Jun 21;228(4706):1401–1406. doi: 10.1126/science.3874428. [DOI] [PubMed] [Google Scholar]
- Larsen F., Gundersen G., Lopez R., Prydz H. CpG islands as gene markers in the human genome. Genomics. 1992 Aug;13(4):1095–1107. doi: 10.1016/0888-7543(92)90024-m. [DOI] [PubMed] [Google Scholar]
- Ledbetter D. H., Rich D. C., O'Connell P., Leppert M., Carey J. C. Precise localization of NF1 to 17q11.2 by balanced translocation. Am J Hum Genet. 1989 Jan;44(1):20–24. [PMC free article] [PubMed] [Google Scholar]
- Marchuk D. A., Saulino A. M., Tavakkol R., Swaroop M., Wallace M. R., Andersen L. B., Mitchell A. L., Gutmann D. H., Boguski M., Collins F. S. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics. 1991 Dec;11(4):931–940. doi: 10.1016/0888-7543(91)90017-9. [DOI] [PubMed] [Google Scholar]
- Marchuk D. A., Tavakkol R., Wallace M. R., Brownstein B. H., Taillon-Miller P., Fong C. T., Legius E., Andersen L. B., Glover T. W., Collins F. S. A yeast artificial chromosome contig encompassing the type 1 neurofibromatosis gene. Genomics. 1992 Jul;13(3):672–680. doi: 10.1016/0888-7543(92)90140-n. [DOI] [PubMed] [Google Scholar]
- McCombie W. R., Martin-Gallardo A., Gocayne J. D., FitzGerald M., Dubnick M., Kelley J. M., Castilla L., Liu L. I., Wallace S., Trapp S. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nat Genet. 1992 Aug;1(5):348–353. doi: 10.1038/ng0892-348. [DOI] [PubMed] [Google Scholar]
- Parimoo S., Patanjali S. R., Shukla H., Chaplin D. D., Weissman S. M. cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9623–9627. doi: 10.1073/pnas.88.21.9623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagle D. A., Collins F. S. An optimized Alu-PCR primer pair for human-specific amplification of YACs and somatic cell hybrids. Hum Mol Genet. 1992 May;1(2):121–122. doi: 10.1093/hmg/1.2.121. [DOI] [PubMed] [Google Scholar]
- Tagle D. A., Swaroop M., Lovett M., Collins F. S. Magnetic bead capture of expressed sequences encoded within large genomic segments. Nature. 1993 Feb 25;361(6414):751–753. doi: 10.1038/361751a0. [DOI] [PubMed] [Google Scholar]
- Taylor S. A., Snell R. G., Buckler A., Ambrose C., Duyao M., Church D., Lin C. S., Altherr M., Bates G. P., Groot N. Cloning of the alpha-adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification. Nat Genet. 1992 Nov;2(3):223–227. doi: 10.1038/ng1192-223. [DOI] [PubMed] [Google Scholar]
- Uberbacher E. C., Mural R. J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11261–11265. doi: 10.1073/pnas.88.24.11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdes J. M., Tagle D. A., Elmer L. W., Collins F. S. A simple non-radioactive method for diagnosis of Huntington's disease. Hum Mol Genet. 1993 Jun;2(6):633–634. doi: 10.1093/hmg/2.6.633. [DOI] [PubMed] [Google Scholar]
- Wallace M. R., Marchuk D. A., Andersen L. B., Letcher R., Odeh H. M., Saulino A. M., Fountain J. W., Brereton A., Nicholson J., Mitchell A. L. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990 Jul 13;249(4965):181–186. doi: 10.1126/science.2134734. [DOI] [PubMed] [Google Scholar]
- Wasmuth J. J., Carlock L. R., Smith B., Immken L. L. A cell hybrid and recombinant DNA library that facilitate identification of polymorphic loci in the vicinity of the Huntington disease gene. Am J Hum Genet. 1986 Sep;39(3):397–403. [PMC free article] [PubMed] [Google Scholar]