Abstract
Light-chain (L-chain) amyloidosis is characterized by deposition of fibrillar aggregates composed of the N-terminal L-chain variable region (VL) domain of an immunoglobulin, generally in individuals overproducing a monoclonal L chain. In addition to proteolytic fragmentation and high protein concentration, particular amino acid substitutions may also contribute to the tendency of an L chain to aggregate in L-chain amyloidosis, although evidence in support of this has been limited and difficult to interpret. In this paper we identify particular amino acid replacements at specific positions in the VL domain that are occupied at frequencies significantly higher in those L chains associated with amyloidosis. Analysis of the structural model for the VL domain of the Bence-Jones protein REI suggests that these positions play important roles in maintaining domain structure and stability. Using an Escherichia coli expression system, we prepared single-point mutants of REI VL incorporating amyloid-associated amino acid replacements that are both rare and located at structurally important positions. These mutants support ordered aggregate formation in an in vitro L-chain fibril formation model in which wild-type REI VL remains soluble. Moreover, the ability of these sequences to aggregate in vitro correlates well with the extent to which domain stability is decreased in denaturant-induced unfolding. The results are consistent with a mechanism for the disease process in which the VL domain, either before or after proteolytic cleavage from the L-chain constant region domain, unfolds by virtue of one or more destabilizing amino acid replacements to generate an aggregation-prone nonnative state.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benson M. D., Dwulet F. E., Madura D., Wheeler G. Amyloidosis related to a lambda IV immunoglobulin light chain protein. Scand J Immunol. 1989 Feb;29(2):175–179. doi: 10.1111/j.1365-3083.1989.tb01114.x. [DOI] [PubMed] [Google Scholar]
- Buxbaum J. Mechanisms of disease: monoclonal immunoglobulin deposition. Amyloidosis, light chain deposition disease, and light and heavy chain deposition disease. Hematol Oncol Clin North Am. 1992 Apr;6(2):323–346. [PubMed] [Google Scholar]
- Cohen A. S. An update of clinical, pathologic, and biochemical aspects of amyloidosis. Int J Dermatol. 1981 Oct;20(8):515–530. doi: 10.1111/j.1365-4362.1981.tb02021.x. [DOI] [PubMed] [Google Scholar]
- Colon W., Kelly J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992 Sep 15;31(36):8654–8660. doi: 10.1021/bi00151a036. [DOI] [PubMed] [Google Scholar]
- Durie B. G., Persky B., Soehnlen B. J., Grogan T. M., Salmon S. E. Amyloid production in human myeloma stem-cell culture, with morphologic evidence of amyloid secretion by associated macrophages. N Engl J Med. 1982 Dec 30;307(27):1689–1692. doi: 10.1056/NEJM198212303072706. [DOI] [PubMed] [Google Scholar]
- Dwulet F. E., O'Connor T. P., Benson M. D. Polymorphism in a kappa I primary (AL) amyloid protein (BAN). Mol Immunol. 1986 Jan;23(1):73–78. doi: 10.1016/0161-5890(86)90173-2. [DOI] [PubMed] [Google Scholar]
- Dwulet F. E., Strako K., Benson M. D. Amino acid sequence of a lambda VI primary (AL) amyloid protein (WLT). Scand J Immunol. 1985 Dec;22(6):653–660. doi: 10.1111/j.1365-3083.1985.tb01927.x. [DOI] [PubMed] [Google Scholar]
- Estus S., Golde T. E., Kunishita T., Blades D., Lowery D., Eisen M., Usiak M., Qu X. M., Tabira T., Greenberg B. D. Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor. Science. 1992 Feb 7;255(5045):726–728. doi: 10.1126/science.1738846. [DOI] [PubMed] [Google Scholar]
- Eulitz M., Breuer M., Linke R. P. Is the formation of AL-type amyloid promoted by structural peculiarities of immunoglobulin L-chains? Primary structure of an amyloidogenic lambda-L-chain (BJP-ZIM). Biol Chem Hoppe Seyler. 1987 Jul;368(7):863–870. doi: 10.1515/bchm3.1987.368.2.863. [DOI] [PubMed] [Google Scholar]
- Gallo G., Picken M., Buxbaum J., Frangione B. The spectrum of monoclonal immunoglobulin deposition disease associated with immunocytic dyscrasias. Semin Hematol. 1989 Jul;26(3):234–245. [PubMed] [Google Scholar]
- Glenner G. G., Ein D., Eanes E. D., Bladen H. A., Terry W., Page D. L. Creation of "amyloid" fibrils from Bence Jones proteins in vitro. Science. 1971 Nov 12;174(4010):712–714. doi: 10.1126/science.174.4010.712. [DOI] [PubMed] [Google Scholar]
- Haass C., Koo E. H., Mellon A., Hung A. Y., Selkoe D. J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature. 1992 Jun 11;357(6378):500–503. doi: 10.1038/357500a0. [DOI] [PubMed] [Google Scholar]
- Holm E., Sletten K., Husby G. Structural studies of a carbohydrate-containing immunoglobulin-lambda-light-chain amyloid-fibril protein (AL) of variable subgroup III. Biochem J. 1986 Nov 1;239(3):545–551. doi: 10.1042/bj2390545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klunk W. E., Pettegrew J. W., Abraham D. J. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem. 1989 Aug;37(8):1273–1281. doi: 10.1177/37.8.2666510. [DOI] [PubMed] [Google Scholar]
- Lee G., Chan W., Hurle M. R., DesJarlais R. L., Watson F., Sathe G. M., Wetzel R. Strong inhibition of fibrinogen binding to platelet receptor alpha IIb beta 3 by RGD sequences installed into a presentation scaffold. Protein Eng. 1993 Sep;6(7):745–754. doi: 10.1093/protein/6.7.745. [DOI] [PubMed] [Google Scholar]
- Levy E., Carman M. D., Fernandez-Madrid I. J., Power M. D., Lieberburg I., van Duinen S. G., Bots G. T., Luyendijk W., Frangione B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990 Jun 1;248(4959):1124–1126. doi: 10.1126/science.2111584. [DOI] [PubMed] [Google Scholar]
- Liepnieks J. J., Dwulet F. E., Benson M. D. Amino acid sequence of a kappa I primary (AL) amyloid protein (AND). Mol Immunol. 1990 Jun;27(6):481–485. doi: 10.1016/0161-5890(90)90066-9. [DOI] [PubMed] [Google Scholar]
- Linke R. P., Zucker-Franklin D., Franklin E. D. Morphologic, chemical, and immunologic studies of amyloid-like fibrils formed from Bence Jones Proteins by proteolysis. J Immunol. 1973 Jul;111(1):10–23. [PubMed] [Google Scholar]
- Matthews B. W. Genetic and structural analysis of the protein stability problem. Biochemistry. 1987 Nov 3;26(22):6885–6888. doi: 10.1021/bi00396a001. [DOI] [PubMed] [Google Scholar]
- Matthews C. R. Effect of point mutations on the folding of globular proteins. Methods Enzymol. 1987;154:498–511. doi: 10.1016/0076-6879(87)54092-7. [DOI] [PubMed] [Google Scholar]
- McCutchen S. L., Colon W., Kelly J. W. Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry. 1993 Nov 16;32(45):12119–12127. doi: 10.1021/bi00096a024. [DOI] [PubMed] [Google Scholar]
- Myatt E. A., Westholm F. A., Weiss D. T., Solomon A., Schiffer M., Stevens F. J. Pathogenic potential of human monoclonal immunoglobulin light chains: relationship of in vitro aggregation to in vivo organ deposition. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3034–3038. doi: 10.1073/pnas.91.8.3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padlan E. A., Love W. E. Refined crystal structure of deoxyhemoglobin S. II. Molecular interactions in the crystal. J Biol Chem. 1985 Jul 15;260(14):8280–8291. [PubMed] [Google Scholar]
- Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
- Schiffer M., Chang C. H., Naik V. M., Stevens F. J. Analysis of immunoglobulin domain interactions. Evidence for a dominant role of salt bridges. J Mol Biol. 1988 Oct 5;203(3):799–802. doi: 10.1016/0022-2836(88)90210-0. [DOI] [PubMed] [Google Scholar]
- Shortle D. Mutational studies of protein structures and their stabilities. Q Rev Biophys. 1992 May;25(2):205–250. doi: 10.1017/s0033583500004674. [DOI] [PubMed] [Google Scholar]
- Tonoike H., Kametani F., Hoshi A., Shinoda T., Isobe T. Primary structure of the variable region of an amyloidogenic Bence Jones protein NIG-77. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1228–1234. doi: 10.1016/0006-291x(85)90317-1. [DOI] [PubMed] [Google Scholar]
- Tsunenaga M., Goto Y., Kawata Y., Hamaguchi K. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments. Biochemistry. 1987 Sep 22;26(19):6044–6051. doi: 10.1021/bi00393a015. [DOI] [PubMed] [Google Scholar]