Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 7;91(12):5451–5455. doi: 10.1073/pnas.91.12.5451

Cell fates in leech embryos with duplicated lineages.

D Lans 1, R K Ho 1, D A Weisblat 1
PMCID: PMC44013  PMID: 8202507

Abstract

We have examined the fates of the progeny of supernumerary embryonic stem cells (O/P teloblasts) generated by microinjecting polyadenylic acid into newborn O/P teloblasts in embryos of the leech, Helobdella triserialis. In normal development, each O/P teloblast generates a rostrocaudal column of daughter cells (primary blast cells) that contribute distinct segmentally iterated O or P sets of epidermal and neural progeny to the mature leech. Previous results suggest that primary blast cells derived from ipsilateral pairs of O/P teloblasts are equipotent and equivalent at birth; that they and their progeny assume distinct O or P fates according to hierarchical and position-dependent interactions; and that the P fate is the primary, or default, fate and the O fate is the secondary fate. In the work presented here, one O/P teloblast was experimentally induced to undergo a supernumerary equal division, and the developmental fates of the progeny of the three (two "duplicate" and one "nonduplicate") ipsilateral O/P teloblasts were determined at stages 8 and 10. We find that some supernumerary O/P teloblasts produce supernumerary P progeny, whereas others generate supernumerary O progeny. When three O/P-derived bandlets are present, bandlets derived from the duplicate O/P teloblasts give rise to progeny of the same (O or P) fate. When the nonduplicate bandlet is absent, the duplicate bandlets assume distinct O and P fates. These results suggest that ipsilateral sister O/P teloblasts, while equipotent, might not be equivalent.

Full text

PDF
5451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair S. S., Weisblat D. A. Cell interactions in the developing epidermis of the leech Helobdella triserialis. Dev Biol. 1984 Feb;101(2):318–325. doi: 10.1016/0012-1606(84)90145-3. [DOI] [PubMed] [Google Scholar]
  2. Eisen J. S. The role of interactions in determining cell fate of two identified motoneurons in the embryonic zebrafish. Neuron. 1992 Feb;8(2):231–240. doi: 10.1016/0896-6273(92)90290-t. [DOI] [PubMed] [Google Scholar]
  3. Gimlich R. L., Braun J. Improved fluorescent compounds for tracing cell lineage. Dev Biol. 1985 Jun;109(2):509–514. doi: 10.1016/0012-1606(85)90476-2. [DOI] [PubMed] [Google Scholar]
  4. Ho R. K., Weisblat D. A. A provisional epithelium in leech embryo: cellular origins and influence on a developmental equivalence group. Dev Biol. 1987 Apr;120(2):520–534. doi: 10.1016/0012-1606(87)90255-7. [DOI] [PubMed] [Google Scholar]
  5. Keleher G. P., Stent G. S. Cell position and developmental fate in leech embryogenesis. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8457–8461. doi: 10.1073/pnas.87.21.8457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nishida H., Satoh N. Determination and regulation in the pigment cell lineage of the ascidian embryo. Dev Biol. 1989 Apr;132(2):355–367. doi: 10.1016/0012-1606(89)90232-7. [DOI] [PubMed] [Google Scholar]
  7. Shankland M. Differentiation of the O and P cell lines in the embryo of the leech. II. Genealogical relationship of descendant pattern elements in alternative developmental pathways. Dev Biol. 1987 Sep;123(1):97–107. doi: 10.1016/0012-1606(87)90431-3. [DOI] [PubMed] [Google Scholar]
  8. Shankland M. Differentiation of the O and p cell lines in the embryo of the leech. I. Sequential commitment of blast cell sublineages. Dev Biol. 1987 Sep;123(1):85–96. doi: 10.1016/0012-1606(87)90430-1. [DOI] [PubMed] [Google Scholar]
  9. Shankland M. Position-dependent cell interactions and commitments in the formation of the leech nervous system. Curr Top Dev Biol. 1987;21:31–63. doi: 10.1016/s0070-2153(08)60132-5. [DOI] [PubMed] [Google Scholar]
  10. Shankland M., Weisblat D. A. Stepwise commitment of blast cell fates during the positional specification of the O and P cell lines in the leech embryo. Dev Biol. 1984 Dec;106(2):326–342. doi: 10.1016/0012-1606(84)90231-8. [DOI] [PubMed] [Google Scholar]
  11. Simpson P. Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development. 1990 Jul;109(3):509–519. doi: 10.1242/dev.109.3.509. [DOI] [PubMed] [Google Scholar]
  12. Stent G. S., Kristan W. B., Jr, Torrence S. A., French K. A., Weisblat D. A. Development of the leech nervous system. Int Rev Neurobiol. 1992;33:109–193. doi: 10.1016/s0074-7742(08)60692-3. [DOI] [PubMed] [Google Scholar]
  13. Sulston J. E., White J. G. Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev Biol. 1980 Aug;78(2):577–597. doi: 10.1016/0012-1606(80)90353-x. [DOI] [PubMed] [Google Scholar]
  14. Taghert P. H., Doe C. Q., Goodman C. S. Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryo. Nature. 1984 Jan 12;307(5947):163–165. doi: 10.1038/307163a0. [DOI] [PubMed] [Google Scholar]
  15. Weisblat D. A., Blair S. S. Developmental interdeterminacy in embryos of the leech Helobdella triserialis. Dev Biol. 1984 Feb;101(2):326–335. doi: 10.1016/0012-1606(84)90146-5. [DOI] [PubMed] [Google Scholar]
  16. Weisblat D. A., Shankland M. Cell lineage and segmentation in the leech. Philos Trans R Soc Lond B Biol Sci. 1985 Dec 17;312(1153):39–56. doi: 10.1098/rstb.1985.0176. [DOI] [PubMed] [Google Scholar]
  17. Zackson S. L. Cell lineage, cell-cell interaction, and segment formation in the ectoderm of a glossiphoniid leech embryo. Dev Biol. 1984 Jul;104(1):143–160. doi: 10.1016/0012-1606(84)90044-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES