Abstract
Germinating rice seeds were fed with [35S]methionine and the incorporation of 35S into β-amylase demonstrated by quantitative immunoprecipitation using rabbit anti-β-amylase immunoglobulin G fraction. Separation of the antigen-antibody complex by Na-dodecylsulfate gel electrophoresis and subsequent radioautography clearly showed the radioactive labeling of the β-amylase molecule. The specific radioactivity of β-amylase derived from scutellum by immunoprecipitation was significantly greater than that of the endosperm. The results strongly indicate that at the onset of germination of rice seeds β-amylase is synthesized de novo in the scutellum and that in later stages there occurs activation of an inactive, latent form of the enzyme associated with starch granules in the endosperm. In later stages of germination this activated form of the enzyme becomes dominant.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen S. S., Park W. M. Early Actions of Gibberellic Acid on the Embryo and on the Endosperm of Avena fatua Seeds. Plant Physiol. 1973 Aug;52(2):174–176. doi: 10.1104/pp.52.2.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daussant J., Corvazier P. Biosynthesis and modifications of alpha- and beta-amylases in germinating wheat seeds. FEBS Lett. 1970 Apr 2;7(2):191–194. doi: 10.1016/0014-5793(70)80154-5. [DOI] [PubMed] [Google Scholar]
- Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Nishimura M., Akazawa T. Studies on spinach leaf ribulosebisphosphate carboxylase. Carboxylase and oxygenase reaction examined by immunochemical methods. Biochemistry. 1974 May 21;13(11):2277–2281. doi: 10.1021/bi00708a006. [DOI] [PubMed] [Google Scholar]
- OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
- Okamoto K., Akazawa T. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds: 8. Immunohistochemical Localization of beta-Amylase. Plant Physiol. 1979 Aug;64(2):337–340. doi: 10.1104/pp.64.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Akazawa T. Enzymic mechanisms of starch breakdown in germinating rice seeds: 7. Amylase formation in the epithelium. Plant Physiol. 1979 Feb;63(2):336–340. doi: 10.1104/pp.63.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paleg L. G. Physiological Effects of Gibberellic Acid. II. On Starch Hydrolyzing Enzymes of Barley Endosperm. Plant Physiol. 1960 Nov;35(6):902–906. doi: 10.1104/pp.35.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]


