Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Jan;65(1):126–128. doi: 10.1104/pp.65.1.126

Biosynthesis of δ-Aminolevulinic Acid from Glutamate in Agmenellum quadruplicatum1

Judith A Kipe-Nolt 1, S Edward Stevens Jr 1
PMCID: PMC440279  PMID: 16661125

Abstract

δ-Aminolevulinic acid accumulated in the culture medium when Agmenellum quadruplicatum strain PR-6 was incubated in the presence of levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydratase, and specifically labeled glutamate and glycine. The δ-aminolevulinic acid was purified using Dowex 50W-X8 and cleaved by periodate to yield succinic acid and formaldehyde. The distribution of radioactivity in the two fragments suggested that in blue-green algae the carbon skeleton of δ-aminolevulinic acid is derived directly from glutamate. However the possibility of the pathway of δ-aminolevulinic acid synthesis, from glycine and succinyl-coenzyme A also functioning in blue-green algae was not eliminated as uptake of glycine was minimal.

Full text

PDF
126

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beale S. I., Castelfranco P. A. 14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun. 1973 May 1;52(1):143–149. doi: 10.1016/0006-291x(73)90966-2. [DOI] [PubMed] [Google Scholar]
  2. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: II. Formation of C-delta-Aminolevulinic Acid from Labeled Precursors in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):297–303. doi: 10.1104/pp.53.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale S. I., Gough S. P., Granick S. Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2719–2723. doi: 10.1073/pnas.72.7.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GRANICK S. Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem. 1961 Apr;236:1168–1172. [PubMed] [Google Scholar]
  5. Jurgenson J. E., Beale S. I., Troxler R. F. Biosynthesis of delta-aminolevulinic acid in the unicellular rhodophyte, cyanidium caldarium. Biochem Biophys Res Commun. 1976 Mar 8;69(1):149–157. doi: 10.1016/s0006-291x(76)80285-9. [DOI] [PubMed] [Google Scholar]
  6. KIKUCHI G., KUMAR A., TALMAGE P., SHEMIN D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem. 1958 Nov;233(5):1214–1219. [PubMed] [Google Scholar]
  7. Kipe-Nolt J. A., Stevens S. E., Jr, Stevens C. L. Biosynthesis of delta-aminolevulinic acid by blue-green algae (cyanobacteria). J Bacteriol. 1978 Jul;135(1):286–288. doi: 10.1128/jb.135.1.286-288.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  9. SHEMIN D., RUSSELL C. S., ABRAMSKY T. The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J Biol Chem. 1955 Aug;215(2):613–626. [PubMed] [Google Scholar]
  10. Troxler R. F., Brown A. S. Metabolism of delta-Aminolevulinic Acid in Red and Blue-Green Algae. Plant Physiol. 1975 Mar;55(3):463–467. doi: 10.1104/pp.55.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES