Abstract
Transported l-[35S]cysteine was rapidly metabolized by cultured tobacco cells when supplied to the cells at 0.02 millimolar or 0.5 millimolar. The internal cysteine pool was expandable to approximately 2400 nmoles per gram fresh weight.
The 35S label derived from cysteine was found in several metabolites. The amount of label in glutathione and sulfate was directly proportional to the internal l-[35S]cysteine, while the levels of labeled methionine and protein were apparently independent of internal labeled cysteine. Cysteine was more rapidly metabolized when the external cysteine concentration was low (0.02 millimolar) with up to 90% of the 35S label present as compounds other than cysteine.
The initial step in cysteine degradation yielded pyruvate, sulfide, and presumably NH4+. Stoichiometry studies using extracts prepared from acetone powders of tobacco cells indicated that pyruvate and sulfide were produced in a 1:1 ratio. The catabolic reaction was linear with respect to time and amount of protein and had a pH optimum of 8 in crude extracts. Preliminary kinetic data indicated the Km to be approximately 0.2 millimolar. The extractable degradative activity was enhanced 15- to 20-fold by preincubating the cells for 24 hours in 0.5 millimolar cysteine. The extractable specific enzyme activity roughly reflected the growth curve of the cells in culture. Maximal cysteine degradation was observed in extracts prepared from late log phase cultures that were preincubated in cysteine, while little activity was found in similar extracts from stationary phase cultures. These results are consistent with an inducible catabolic enzyme similar to the cysteine desulfhydrase from bacteria.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borum P. R., Monty K. J. Regulatory mutants and control of cysteine biosynthetic enzymes in Salmonella typhimurium. J Bacteriol. 1976 Jan;125(1):94–101. doi: 10.1128/jb.125.1.94-101.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COWIE D. B., McCLURE F. T. Metabolic pools and the synthesis of macromolecules. Biochim Biophys Acta. 1959 Jan;31(1):236–245. doi: 10.1016/0006-3002(59)90460-3. [DOI] [PubMed] [Google Scholar]
- Collins J. M., Monty K. J. The cysteine desulfhydrase of Salmonella typhimurium. Formation of an altered enzyme by cryloysis. J Biol Chem. 1973 Jun 10;248(11):3769–3776. [PubMed] [Google Scholar]
- Collins J. M., Monty K. J. The cysteine desulfhydrase of Salmonella typhimurium. Kinetic and catalytic properties. J Biol Chem. 1973 Sep 10;248(17):5943–5949. [PubMed] [Google Scholar]
- Collins J. M., Wallenstein A., Monty K. J. Regulatory features of the cysteine desulfhydrase of Salmonella typhimurium. Biochim Biophys Acta. 1973 Jun 20;313(1):156–162. doi: 10.1016/0304-4165(73)90196-7. [DOI] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H., Giovanelli J., Macnicol P. K. Sulfur-containing Compounds in Lemna perpusilla 6746 Grown at a Range of Sulfate Concentrations. Plant Physiol. 1978 Oct;62(4):629–635. doi: 10.1104/pp.62.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamborg O. L. The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol. 1970 Apr;45(4):372–375. doi: 10.1104/pp.45.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanelli J., Mudd S. H., Datko A. H. Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem. 1978 Aug 25;253(16):5665–5677. [PubMed] [Google Scholar]
- Giovanelli J., Owens L. D., Mudd S. H. beta-Cystathionase In Vivo Inactivation by Rhizobitoxine and Role of the Enzyme in Methionine Biosynthesis in Corn Seedlings. Plant Physiol. 1973 Mar;51(3):492–503. doi: 10.1104/pp.51.3.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrington H. M., Smith I. K. Cysteine transport into cultured tobacco cells. Plant Physiol. 1977 Dec;60(6):807–811. doi: 10.1104/pp.60.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart J. W., Filner P. Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol. 1969 Sep;44(9):1253–1259. doi: 10.1104/pp.44.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones-Mortimer M. C. Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli K12. Biochem J. 1968 Dec;110(3):597–602. doi: 10.1042/bj1100597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kredich N. M., Foote L. J., Keenan B. S. The stoichiometry and kinetics of the inducible cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem. 1973 Sep 10;248(17):6187–6196. [PubMed] [Google Scholar]
- Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Paszewski A., Grabski J. Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Role of cysteine and-or homocysteine as regulatory effectors. Mol Gen Genet. 1974;132(4):307–320. doi: 10.1007/BF00268571. [DOI] [PubMed] [Google Scholar]
- Reuveny Z. Derepression of ATP sulfurylase by the sulfate analogs molybdate and selenate in cultured tobacco cells. Proc Natl Acad Sci U S A. 1977 Feb;74(2):619–622. doi: 10.1073/pnas.74.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuveny Z., Filner P. Regulation of adenosine triphosphate sulfurylase in cultured tobacco cells. Effects of sulfur and nitrogen sources on the formation and decay of the enzyme. J Biol Chem. 1977 Mar 25;252(6):1858–1864. [PubMed] [Google Scholar]
- SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
- Smith I. K. Sulfate transport in cultured tobacco cells. Plant Physiol. 1975 Feb;55(2):303–307. doi: 10.1104/pp.55.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tishel M., Mazelis M. Enzymatic degradation of L-cystine by cytoplasmic particles from cabbage leaves. Nature. 1966 Aug 13;211(5050):745–746. doi: 10.1038/211745a0. [DOI] [PubMed] [Google Scholar]
- Wheldrake J. F. Intracellular concentration of cysteine in Escherichia coli and its relation to repression of the sulphate-activating enzymes. Biochem J. 1967 Nov;105(2):697–699. doi: 10.1042/bj1050697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson L. G., Bressan R. A., Filner P. Light-dependent Emission of Hydrogen Sulfide from Plants. Plant Physiol. 1978 Feb;61(2):184–189. doi: 10.1104/pp.61.2.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
