Abstract
Boron is required for fiber growth and development in cotton ovules cultured in vitro. Incorporation of [14C]glucose by such fiber from supplied UDP-[14C]glucose into the hot alkali-insoluble fraction is rapid and linear for about 30 minutes. Incorporation of [14C]glucose from such substrate by fibers grown in boron-deficient ovule cultures is much less than in the case with fibers from ovules cultured with boron in the medium. Total products (alkali-soluble plus alkali-insoluble fractions) were also greater in fibers from ovules cultured with boron. The fraction insoluble in acetic-nitric reagent was a small part of the total glucans; however, in the boron-sufficient fibers, there was significantly more of this fraction than in fibers from boron-deficient ovule cultures. The hot water-soluble glucose polymers from the labeled fibers had a significant fraction of the total [14C]glucose incorporated from UDP-[14C]glucose. Both β-1,4- and β-1,3- water-soluble polymers were formed in the boron-sufficient fibers, whereas the same water-soluble fraction from the boron-deficient fibers was predominantly β-1,3-polymers. The incorporation of [14C]glucose from GDP-[14C]glucose by the fibers attached to the ovules was insignificant.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. L., Ray P. M. Labeling of the Plasma Membrane of Pea Cells by a Surface-localized Glucan Synthetase. Plant Physiol. 1978 May;61(5):723–730. doi: 10.1104/pp.61.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber G. A., Hassid W. Z. Synthesis of cellulose by enzyme preparations from the developing cotton boll. Nature. 1965 Jul 17;207(994):295–296. doi: 10.1038/207295b0. [DOI] [PubMed] [Google Scholar]
- Birnbaum E. H., Beasley C. A., Dugger W. M. Boron Deficiency in Unfertilized Cotton (Gossypium hirsutum) Ovules Grown in Vitro. Plant Physiol. 1974 Dec;54(6):931–935. doi: 10.1104/pp.54.6.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnbaum E. H., Dugger W. M., Beasley B. C. Interaction of boron with components of nucleic Acid metabolism in cotton ovules cultured in vitro. Plant Physiol. 1977 Jun;59(6):1034–1038. doi: 10.1104/pp.59.6.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. M., Jr, Montezinos D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A. 1976 Jan;73(1):143–147. doi: 10.1073/pnas.73.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brummond D. O., Gibbons A. P. Enzymatic cellulose synthesis from UDP-(14C)-glucose by Lupinus albus. Biochem Z. 1965 Aug 6;342(3):308–318. [PubMed] [Google Scholar]
- Chao H. Y., Maclachlan G. A. Soluble Factors in Pisum Extracts Which Moderate Pisum beta-Glucan Synthetase Activity. Plant Physiol. 1978 Jun;61(6):943–948. doi: 10.1104/pp.61.6.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmer D. P., Beasley C. A., Ordin L. Utilization of nucleoside diphosphate glucoses in developing cotton fibers. Plant Physiol. 1974 Feb;53(2):149–153. doi: 10.1104/pp.53.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmer D. P., Heiniger U., Kulow C. UDP-glucose: Glucan Synthetase in Developing Cotton Fibers: I. Kinetic and Physiological Properties. Plant Physiol. 1977 Apr;59(4):713–718. doi: 10.1104/pp.59.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dugger W. M., Humphreys T. E., Calhoun B. The Influence of Boron on Starch Phosphorylase and its Significance in Translocation of Sugars in Plants. Plant Physiol. 1957 Jul;32(4):364–370. doi: 10.1104/pp.32.4.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dugger W. M., Humphreys T. E. Influence of Boron on Enzymatic Reactions Associated with Biosynthesis of Sucrose. Plant Physiol. 1960 Jul;35(4):523–530. doi: 10.1104/pp.35.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flowers H. M., Batra K. K., Kemp J., Hassid W. Z. Biosynthesis of Insoluble Glucans From Uridine-Diphosphate-d-Glucose With Enzyme Preparations From Phaseolus aureus and Lupinus albus. Plant Physiol. 1968 Oct;43(10):1703–1709. doi: 10.1104/pp.43.10.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heiniger U., Delmer D. P. UDP-glucose: Glucan Synthetase in Developing Cotton Fibers: II. Structure of the Reaction Product. Plant Physiol. 1977 Apr;59(4):719–723. doi: 10.1104/pp.59.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOUGHMAN B. C. Effect of boric acid on the phosphoglucomutase of pea seeds. Nature. 1961 Sep 30;191:1399–1400. doi: 10.1038/1911399a0. [DOI] [PubMed] [Google Scholar]
- Lee S., Aronoff S. Boron in plants: a biochemical role. Science. 1967 Nov 10;158(3802):798–799. doi: 10.1126/science.158.3802.798. [DOI] [PubMed] [Google Scholar]
- Meinert M. C., Delmer D. P. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 1977 Jun;59(6):1088–1097. doi: 10.1104/pp.59.6.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ordin L., Hall M. A. Cellulose synthesis in higher plants from UDP glucose. Plant Physiol. 1968 Mar;43(3):473–476. doi: 10.1104/pp.43.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Péaud-Lenoël C., Axelos M. Structural features of the beta-glucans enzymatically synthesized from uridine diphosphate glucose by wheat seedlings. FEBS Lett. 1970 Jun 8;8(4):224–228. doi: 10.1016/0014-5793(70)80270-8. [DOI] [PubMed] [Google Scholar]
- Ray P. M., Shininger T. L., Ray M. M. ISOLATION OF beta-GLUCAN SYNTHETASE PARTICLES FROM PLANT CELLS AND IDENTIFICATION WITH GOLGI MEMBRANES. Proc Natl Acad Sci U S A. 1969 Oct;64(2):605–612. doi: 10.1073/pnas.64.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond Y., Fincher G. B., Maclachlan G. A. Tissue Slice and Particulate beta-Glucan Synthetase Activities from Pisum Epicotyls. Plant Physiol. 1978 Jun;61(6):938–942. doi: 10.1104/pp.61.6.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott E. G. Effect of Supra-Optimal Boron Levels on Respiration and Carbohydrate Metabolism of Helianthus Annuus. Plant Physiol. 1960 Sep;35(5):653–661. doi: 10.1104/pp.35.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore G., Maclachlan G. A. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. J Cell Biol. 1975 Mar;64(3):557–571. doi: 10.1083/jcb.64.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southworth D., Dickinson D. B. beta-1, 3-Glucan Synthase from Lilium longiflorum Pollen. Plant Physiol. 1975 Jul;56(1):83–87. doi: 10.1104/pp.56.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Hassid W. Z. Solubilization and Separation of Uridine Diphospho-d-glucose: beta-(1 --> 4) Glucan and Uridine Diphospho-d-glucose:beta-(1 --> 3) Glucan Glucosyltransferases from Coleoptiles of Avena sativa. Plant Physiol. 1971 Jun;47(6):740–744. doi: 10.1104/pp.47.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Updegraff D. M. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969 Dec;32(3):420–424. doi: 10.1016/s0003-2697(69)80009-6. [DOI] [PubMed] [Google Scholar]
- Van Der Woude W. J., Lembi C. A., Morré D. J. beta-Glucan Synthetases of Plasma Membrane and Golgi Apparatus from Onion Stem. Plant Physiol. 1974 Sep;54(3):333–340. doi: 10.1104/pp.54.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villemez C. L., Franz G., Hassid W. Z. Biosynthesis of Alkali Insoluble Polysaccharide from UDP-d-Glucose with Particulate Enzyme Preparations from Phaseolus aureus. Plant Physiol. 1967 Sep;42(9):1219–1223. doi: 10.1104/pp.42.9.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. M. Cell wall carbohydrates in tobacco pith parenchyma as affected by boron deficiency & by growth in tissue culture. Plant Physiol. 1961 May;36(3):336–341. doi: 10.1104/pp.36.3.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
