Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Feb;65(2):298–304. doi: 10.1104/pp.65.2.298

Cryoprotection by Glucose, Sucrose, and Raffinose to Chloroplast Thylakoids 1

R Daniel Lineberger 1,2,2, Peter L Steponkus 1,2
PMCID: PMC440314  PMID: 16661177

Abstract

Differential cryoprotection is afforded to chloroplast thylakoids against freeze-induced uncoupling of cyclic photophosphorylation by equimolar concentrations of glucose, sucrose, and raffinose. This differential protective effect appears to be due to nonideal activity-concentration profiles exhibited by the sugars during freezing. When cryoprotection is analyzed as a function of the mole fraction of NaCl to which the membranes are exposed during freezing, the pattern of protection to cyclic photophosphorylation and its component reactions is not dependent upon the chemical identity of the protective solute. Cryoprotective efficiency of glucose, sucrose, and raffinose can be accounted for by proposing an activity dependent alteration in the freezing environment rather than specific solute-membrane interactions.

Full text

PDF
298

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beopoulos N., Esnault R., Buri J. F. Study on plant RNAases. Isolation and properties of several activities from Vicia faba root cells. Biochim Biophys Acta. 1978 Jan 26;517(1):216–227. doi: 10.1016/0005-2787(78)90049-7. [DOI] [PubMed] [Google Scholar]
  2. Chen D., Schultz G., Katchalski E. Early ribosomal RNA transcription and appearance of cytoplasmic ribosomes during germination of the wheat embryo. Nat New Biol. 1971 May 19;231(20):69–72. doi: 10.1038/newbio231069a0. [DOI] [PubMed] [Google Scholar]
  3. Doebbler G. F. Cryoprotective compounds. Review and discussion of structure and function. Cryobiology. 1966 Jul-Aug;3(1):2–11. doi: 10.1016/s0011-2240(66)80144-x. [DOI] [PubMed] [Google Scholar]
  4. Garber M. P., Steponkus P. L. Alterations in Chloroplast Thylakoids during an in Vitro Freeze-Thaw Cycle. Plant Physiol. 1976 May;57(5):673–680. doi: 10.1104/pp.57.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heber U. W., Santarius K. A. Loss of Adenosine Triphosphate Synthesis Caused by Freezing and Its Relationship to Frost Hardiness Problems. Plant Physiol. 1964 Sep;39(5):712–719. doi: 10.1104/pp.39.5.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heber U. Freezing injury and uncoupling of phosphorylation from electron transport in chloroplasts. Plant Physiol. 1967 Oct;42(10):1343–1350. doi: 10.1104/pp.42.10.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heber U., Tyankova L., Santarius K. A. Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim Biophys Acta. 1971 Aug 13;241(2):578–592. doi: 10.1016/0005-2736(71)90056-3. [DOI] [PubMed] [Google Scholar]
  8. Johri M. M., Varner J. E. Enhancement of RNA synthesis in isolated pea nuclei by gibberellic acid. Proc Natl Acad Sci U S A. 1968 Jan;59(1):269–276. doi: 10.1073/pnas.59.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kamienietzky A., Nelson N. Preparation and properties of chloroplasts depleted of chloroplast coupling factor 1 by sodium bromide treatment. Plant Physiol. 1975 Feb;55(2):282–287. doi: 10.1104/pp.55.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaur-Sawhney R., Altman A., Galston A. W. Dual Mechanisms in Polyamine-mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts. Plant Physiol. 1978 Jul;62(1):158–160. doi: 10.1104/pp.62.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOVELOCK J. E. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953 May;11(1):28–36. doi: 10.1016/0006-3002(53)90005-5. [DOI] [PubMed] [Google Scholar]
  12. Lipinski C., Ferro A. J., Mills D. Macromolecule synthesis in a mutant of Saccharomyces cerevisiae inhibited by S-adenosyimethionine. Mol Gen Genet. 1976 Mar 30;144(3):301–306. doi: 10.1007/BF00341728. [DOI] [PubMed] [Google Scholar]
  13. Luthe D. S., Quatrano R. S. Transcription in Isolated Wheat Nuclei: II. CHARACTERIZATION OF RNA SYNTHESIZED IN VITRO. Plant Physiol. 1980 Feb;65(2):309–313. doi: 10.1104/pp.65.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mazur P. Cryobiology: the freezing of biological systems. Science. 1970 May 22;168(3934):939–949. doi: 10.1126/science.168.3934.939. [DOI] [PubMed] [Google Scholar]
  15. Meryman H. T., Williams R. J., Douglas M. S. Freezing injury from "solution effects" and its prevention by natural or artificial cryoprotection. Cryobiology. 1977 Jun;14(3):287–302. doi: 10.1016/0011-2240(77)90177-8. [DOI] [PubMed] [Google Scholar]
  16. Pertoft H., Laurent T. C., Lås T., Kågedal L. Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem. 1978 Jul 15;88(1):271–282. doi: 10.1016/0003-2697(78)90419-0. [DOI] [PubMed] [Google Scholar]
  17. SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
  18. Santarius K. A. The effect of freezing on thylakoid membranes in the presence of organic acids. Plant Physiol. 1971 Aug;48(2):156–162. doi: 10.1104/pp.48.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sasaki K., Sasaki S. Low-temperature-dependent ribonuclease in chromatin of winter wheat seedlings. Biochem Biophys Res Commun. 1976 Oct 4;72(3):850–858. doi: 10.1016/s0006-291x(76)80210-0. [DOI] [PubMed] [Google Scholar]
  20. Steponkus P. L., Garber M. P., Myers S. P., Lineberger R. D. Effects of cold acclimation and freezing on structure and function of chloroplast thylakoids. Cryobiology. 1977 Jun;14(3):303–321. doi: 10.1016/0011-2240(77)90178-x. [DOI] [PubMed] [Google Scholar]
  21. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  22. Volger H. G., Heber U. Cryoprotective leaf proteins. Biochim Biophys Acta. 1975 Dec 15;412(2):335–349. doi: 10.1016/0005-2795(75)90048-3. [DOI] [PubMed] [Google Scholar]
  23. Williams R. J., Meryman H. T. Freezing injury and resistance in spinach chloroplast grana. Plant Physiol. 1970 Jun;45(6):752–755. doi: 10.1104/pp.45.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson P. S., Bennett J. Transcription in nuclei isolated from a higher plant. Biochem Soc Trans. 1976;4(4):812–813. doi: 10.1042/bst0040812. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES