Abstract
Indole-3-acetyl-myo-inositol esters constitute 30% of the low molecular weight derivatives of indole-3-acetic acid (IAA) in seeds of Zea mays. [14C]Indole-3-acetyl-myo-inositol was applied to a cut in the endosperm of the seed and found to be transported from endosperm to shoot at 400 times the rate of transport of free IAA. The rate of transport of indole-3-acetyl-myo-inositol from endosperm to shoot was 6.3 picomoles per shoot per hour and thus adequate to serve as the seed auxin precursor for the free IAA diffusing downward from the shoot tip. Indole-3-acetyl-myo-inositol is the first seed auxin precursor to be identified.
Application of either [14C]IAA or 14C-indole-3-acetyl-myo-inositol ester to the endosperm results in both free and esterified [14C]IAA in the seedling shoot. Esterification of free IAA and hydrolysis of indole-3-acetyl-myo-inositol occurred in the shoot and not the endosperm yielding ratios of ester to free IAA which approximate the ratios of ester to free IAA normally found in corn shoot tissue. This proves, for the first time, that esterified IAA and free IAA are interconvertible in the growing shoot. Since free IAA may be limiting for plant growth, knowledge that the free hormone is in “equilibrium” with its conjugates suggests new methods for the control of plant growth.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandurski R. S., Schulze A., Cohen J. D. Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1219–1223. doi: 10.1016/0006-291x(77)91136-6. [DOI] [PubMed] [Google Scholar]
- Bandurski R. S., Schulze A. Concentrations of Indole-3-acetic Acid and Its Esters in Avena and Zea. Plant Physiol. 1974 Sep;54(3):257–262. doi: 10.1104/pp.54.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidonis G. H., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic Acid in soybean root callus and differentiated soybean root cultures as a function of concentration and tissue age. Plant Physiol. 1978 Jul;62(1):80–83. doi: 10.1104/pp.62.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehmann A. The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr. 1977 Feb 11;132(2):267–276. doi: 10.1016/s0021-9673(00)89300-0. [DOI] [PubMed] [Google Scholar]
- Epstein E., Cohen J. D., Bandurski R. S. Concentration and Metabolic Turnover of Indoles in Germinating Kernels of Zea mays L. Plant Physiol. 1980 Mar;65(3):415–421. doi: 10.1104/pp.65.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie B., Thimann K. V. Transport & Distribution of Auxin during Tropistic Response. I. The Lateral Migration of Auxin in Geotropism. Plant Physiol. 1963 Mar;38(2):214–225. doi: 10.1104/pp.38.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall P. L., Bandurski R. S. Movement of Indole-3-acetic Acid and Tryptophan-derived Indole-3-acetic Acid from the Endosperm to the Shoot of Zea mays L. Plant Physiol. 1978 Mar;61(3):425–429. doi: 10.1104/pp.61.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton R. H. Isolation of indole-3-acetic acid from corn kernels & etiolated corn seedlings. Plant Physiol. 1961 May;36(3):354–359. doi: 10.1104/pp.36.3.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopcewicz J., Ehmann A., Bandurski R. S. Enzymatic Esterification of Indole-3-acetic Acid to myo-Inositol and Glucose. Plant Physiol. 1974 Dec;54(6):846–851. doi: 10.1104/pp.54.6.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Percival F. W., Bandurski R. S. Esters of indole-3-acetic Acid from Avena seeds. Plant Physiol. 1976 Jul;58(1):60–67. doi: 10.1104/pp.58.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda M., Bandurski R. S. A Quantitative Estimation of Alkali-labile Indole-3-Acetic Acid Compounds in Dormant and Germinating Maize Kernels. Plant Physiol. 1969 Aug;44(8):1175–1181. doi: 10.1104/pp.44.8.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]