Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Apr;65(4):675–679. doi: 10.1104/pp.65.4.675

Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism

David A Day 1,1
PMCID: PMC440404  PMID: 16661260

Abstract

Mitochondria isolated from Kalanchoë daigremontiana, a Crassulacean acid metabolism plant, decarboxylate added malate to pyruvate at rates of up to 100 micromoles per hour per milligram original chlorophyll in the presence of ADP. Omitting ADP reduces this rate by approximately 50%. Antimycin A inhibits malate decarboxylation and this inhibition could be relieved by addition of aspartate and α-ketoglutarate to the mitochondria. Increasing the pH of the external medium inhibited malate decarboxylation; a dramatic decrease in pyruvate production was observed between pH 7.2 and pH 7.4. It is suggested that cytoplasmic pH changes may regulate the contribution of mitochondria to malate decarboxylation in the light in vivo.

Full text

PDF
675

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arron G. P., Spalding M. H., Edwards G. E. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant. Plant Physiol. 1979 Aug;64(2):182–186. doi: 10.1104/pp.64.2.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  4. Chapman K. S., Hatch M. D. Regulation of mitochondrial NAD-malic enzyme involved in C4 pathway photosynthesis. Arch Biochem Biophys. 1977 Nov;184(1):298–306. doi: 10.1016/0003-9861(77)90354-x. [DOI] [PubMed] [Google Scholar]
  5. Day D. A., Hanson J. B. Effect of phosphate and uncouplers on substrate transport and oxidation by isolated corn mitochondria. Plant Physiol. 1977 Feb;59(2):139–144. doi: 10.1104/pp.59.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day D. A., Hanson J. B. Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 1977 Apr;59(4):630–635. doi: 10.1104/pp.59.4.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Day D. A., Rayner J. R., Wiskich J. T. Characteristics of External NADH Oxidation by Beetroot Mitochondria. Plant Physiol. 1976 Jul;58(1):38–42. doi: 10.1104/pp.58.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Day D. A., Wiskich J. T. Pyridine nucleotide interactions with isolated plant mitochondria. Biochim Biophys Acta. 1978 Mar 13;501(3):396–404. doi: 10.1016/0005-2728(78)90107-x. [DOI] [PubMed] [Google Scholar]
  9. Day D. A., Wiskich J. T. The Effect of Exogenous Nicotinamide Adenine Dinucleotide on the Oxidation of Nicotinamide Adenine Dinucleotide-linked Substrates by Isolated Plant Mitochondria. Plant Physiol. 1974 Sep;54(3):360–363. doi: 10.1104/pp.54.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halestrap A. P. The mechanism of the inhibition of the mitochondrial pyruvate transportater by alpha-cyanocinnamate derivatives. Biochem J. 1976 Apr 15;156(1):181–183. doi: 10.1042/bj1560181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatch M. D., Mau S. L. Activity, location, and role of asparate aminotransferase and alanine aminotransferase isoenzymes in leaves with C4 pathway photosynthesis. Arch Biochem Biophys. 1973 May;156(1):195–206. doi: 10.1016/0003-9861(73)90357-3. [DOI] [PubMed] [Google Scholar]
  12. Hatch M. D., Mau S. L., Kagawa T. Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis. Arch Biochem Biophys. 1974 Nov;165(1):188–200. doi: 10.1016/0003-9861(74)90155-6. [DOI] [PubMed] [Google Scholar]
  13. Jung D. W., Laties G. G. Citrate and succinate uptake by potato mitochondria. Plant Physiol. 1979 Apr;63(4):591–597. doi: 10.1104/pp.63.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kagawa T., Hatch M. D. Mitochondria as a site of C4 acid decarboxylation in C4-pathway photosynthesis. Arch Biochem Biophys. 1975 Apr;167(2):687–696. doi: 10.1016/0003-9861(75)90513-5. [DOI] [PubMed] [Google Scholar]
  15. Kimpel J. A., Hanson J. B. Activation of endogenous respiration and anion transport in corn mitochondria by acidification of the medium. Plant Physiol. 1977 Dec;60(6):933–934. doi: 10.1104/pp.60.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koeppe D. E., Miller R. J. Oxidation of reduced nicotinamide adenine dinucleotide phosphate by isolated corn mitochondria. Plant Physiol. 1972 Mar;49(3):353–357. doi: 10.1104/pp.49.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Spalding M. H., Schmitt M. R., Ku S. B., Edwards G. E. Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum. Plant Physiol. 1979 Apr;63(4):738–743. doi: 10.1104/pp.63.4.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiskich J. T. Phosphate-dependent Substrate Transport into Mitochondria: Oxidative Studies. Plant Physiol. 1975 Jul;56(1):121–125. doi: 10.1104/pp.56.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES