Abstract
Relatively high concentrations of monovalent salts (150 millimolar) stimulated light-saturated uncoupled rates of O2 evolution linked to oxaloacetic acid (OAA) reduction by intact chloroplasts 2-to 3-fold. In contrast, monovalent salts partially inhibited light-saturated rates of O2 evolution coupled to CO2 fixation and uncoupled rates of nitrite reduction. In the presence of high salt concentration, light-saturated rates of electron transport were about equivalent for all three terminal electron acceptors. It is inferred that exogenous monovalent salts have at least two effects on photosynthetic electron transport, independent of photophosphorylation and CO2 metabolism: a partial inhibitory effect common to OAA, NO2− and CO2 reduction and a marked stimulatory effect unique to the photoreduction of OAA.
The stimulation of electron transport to OAA was effected by certain exogenous monovalent salts (KCl or NaCl, but not LiCl). Divalent salts (MgCl2 or CaCl2) and high osmotic strength were ineffective. The salt-induced stimulation was eliminated by low concentrations of phosphate or sulfate (≥ millimolar) and by higher concentrations of magnesium (≥30 millimolar). These results suggest that the ion content of the medium (or cytosol) is potentially important in modulating photosynthetic electron transport events in intact chloroplasts.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avron M., Gibbs M. Carbon dioxide fixation in the light and in the dark by isolated spinach chloroplasts. Plant Physiol. 1974 Feb;53(2):140–143. doi: 10.1104/pp.53.2.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bamberger E. S., Avron M. Site of action of inhibitors of carbon dioxide assimilation by whole lettuce chloroplasts. Plant Physiol. 1975 Oct;56(4):481–485. doi: 10.1104/pp.56.4.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heber U., Andrews T. J., Boardman N. K. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts. Plant Physiol. 1976 Feb;57(2):277–283. doi: 10.1104/pp.57.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
- Hind G., McCarty R. E. The role of cation fluxes in chloroplast activity. Photophysiology. 1973;0(0):113–156. doi: 10.1016/b978-0-12-282608-5.50010-2. [DOI] [PubMed] [Google Scholar]
- Huber S. C., Edwards G. E. Transport in C4 mesophyll chloroplasts characterization of the pyruvate carrier. Biochim Biophys Acta. 1977 Dec 23;462(3):583–602. doi: 10.1016/0005-2728(77)90103-7. [DOI] [PubMed] [Google Scholar]
- Huber S. C. Effect of pH on chloroplast photosynthesis. Inhibition of O2 evolution by inorganic phosphate and magnesium. Biochim Biophys Acta. 1979 Jan 11;545(1):131–140. doi: 10.1016/0005-2728(79)90120-8. [DOI] [PubMed] [Google Scholar]
- Huber S. C. Regulation of chloroplast photosynthetic activity by exogenous magnesium. Plant Physiol. 1978 Sep;62(3):321–325. doi: 10.1104/pp.62.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson H. S., Hatch M. D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem J. 1970 Sep;119(2):273–280. doi: 10.1042/bj1190273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehner K., Heldt H. W. Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):531–544. doi: 10.1016/0005-2728(78)90119-6. [DOI] [PubMed] [Google Scholar]
- Neyra C. A., Hageman R. H. Dependence of nitrite reduction on electron transport chloroplasts. Plant Physiol. 1974 Oct;54(4):480–483. doi: 10.1104/pp.54.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
- Sokolove P. M., Marsho T. V. Ascorbate-independent carotenoid de-epoxidation in intact spinach chloroplasts. Biochim Biophys Acta. 1976 May 14;430(2):321–326. doi: 10.1016/0005-2728(76)90088-8. [DOI] [PubMed] [Google Scholar]
- Sokolove P. M., Marsho T. V. The effect of valinomycin on electron transport in intact spinach chloroplasts. FEBS Lett. 1979 Apr 1;100(1):179–184. doi: 10.1016/0014-5793(79)81159-x. [DOI] [PubMed] [Google Scholar]
- Telfer A., Barber J., Nicolson J. Availability of monovalent and divalent cations within intact chloroplasts for the action of ionophores nigericin and A23187. Biochim Biophys Acta. 1975 Aug 11;396(2):301–309. doi: 10.1016/0005-2728(75)90043-2. [DOI] [PubMed] [Google Scholar]
- de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

