Abstract
The ATP content of 7-day-old Avena sativa leaves during senescence in dark and in light, and after treatment with cytokinins and other reagents, has been determined by the luciferin-luciferase method. Special care was taken to avoid decomposition of the ATP, and a detailed procedure is presented for ATP analysis at the picomole level. Preliminary experiments with several inhibitors of photophosphorylation suggest, though not conclusively, that the delaying effect of light on senescence is mediated by photophosphorylation. The ATP values of the leaves senescing in darkness are found to increase in parallel with the large increase in respiratory rate, and kinetin prevents this increase just as completely as it prevents the respiratory rise. It is concluded that the respiratory increase in senescence cannot be simply due to uncoupling. In light the ATP level also rises, though more slowly, and again kinetin prevents this rise. l-Serine, which promotes dark senescence, does not significantly modify the dark ATP level, but both arginine and kinetin, which antagonize the action of serine on senescence, greatly lower the ATP level below that on serine alone. Cycloheximide has a similar effect, and the combination of cycloheximide and kinetin lowers the ATP level drastically. Fusicoccin, which opens stomata in the dark, correspondingly maintains the ATP at a low level. Thus, in general, a low level of ATP is associated with the prevention of dark senescence, i.e. probably with ATP utilization, and the ATP level at any time may thus be determined more by the rate of utilization than by the efficiency of respiratory coupling.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I., Chain R. K. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4961–4965. doi: 10.1073/pnas.72.12.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheer S., Gentile J. H., Hegre C. S. Improved methods for ATP analysis. Anal Biochem. 1974 Jul;60(1):102–114. doi: 10.1016/0003-2697(74)90134-1. [DOI] [PubMed] [Google Scholar]
- Dhople A. M., Hanks J. H. Quantitative extraction of adenosine triphosphate from cultivable and host-grown microbes: calculation of adenosine triphosphate pools. Appl Microbiol. 1973 Sep;26(3):399–403. doi: 10.1128/am.26.3.399-403.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krogmann D. W., Jagendorf A. T., Avron M. Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation. Plant Physiol. 1959 May;34(3):272–277. doi: 10.1104/pp.34.3.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin S., Cohen H. P. Measurement of adenosine triphosphate content of crayfish stretch receptor cell preparations. Anal Biochem. 1968 Sep;24(3):531–540. doi: 10.1016/0003-2697(68)90161-9. [DOI] [PubMed] [Google Scholar]
- Macnicol P. K., Young R. E., Biale J. B. Metabolic regulation in the senescing tobacco leaf: I. Changes in pattern of p incorporation into leaf disc metabolites. Plant Physiol. 1973 Apr;51(4):793–797. doi: 10.1104/pp.51.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin C., Thimann K. V. The role of protein synthesis in the senescence of leaves: I. The formation of protease. Plant Physiol. 1972 Jan;49(1):64–71. doi: 10.1104/pp.49.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mettler I. J., Leonard R. T. Ion transport in isolated protoplasts from tobacco suspension cells: I. General characteristics. Plant Physiol. 1979 Jan;63(1):183–190. doi: 10.1104/pp.63.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montague M. J., Armstrong T. A., Jaworski E. G. Polyamine Metabolism in Embryogenic Cells of Daucus carota: II. Changes in Arginine Decarboxylase Activity. Plant Physiol. 1979 Feb;63(2):341–345. doi: 10.1104/pp.63.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibaoka H., Thimann K. V. Antagonisms between Kinetin and Amino Acids: Experiments on the Mode of Action of Cytokinins. Plant Physiol. 1970 Aug;46(2):212–220. doi: 10.1104/pp.46.2.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shropshire W., Jr, Gettens R. H. Light induced concentration changes of adenosine-triphosphate in phycomyces sporangiophores. Plant Physiol. 1966 Feb;41(2):203–207. doi: 10.1104/pp.41.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava B. I., Ware G. The effect of kinetin on nucleic acids and nucleases of excised barley leaves. Plant Physiol. 1965 Jan;40(1):62–64. doi: 10.1104/pp.40.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St John J. B. Determination of ATP in Chlorella with the luciferin-luciferase enzyme system. Anal Biochem. 1970 Oct;37(2):409–416. doi: 10.1016/0003-2697(70)90066-7. [DOI] [PubMed] [Google Scholar]
- Tetley R. M., Thimann K. V. The Metabolism of Oat Leaves during Senescence: I. Respiration, Carbohydrate Metabolism, and the Action of Cytokinins. Plant Physiol. 1974 Sep;54(3):294–303. doi: 10.1104/pp.54.3.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thimann K. V., Satler S. Relation between senescence and stomatal opening: Senescence in darkness. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2770–2773. doi: 10.1073/pnas.76.6.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thimann K. V., Tetley R. M., Krivak B. M. Metabolism of Oat Leaves during Senescence: V. Senescence in Light. Plant Physiol. 1977 Mar;59(3):448–454. doi: 10.1104/pp.59.3.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollgiehn R. Nucleic acid and protein metabolism of excised leaves. Symp Soc Exp Biol. 1967;21:231–246. [PubMed] [Google Scholar]
- Young R. E., Biale J. B. Phosphorylation in avocado fruit slices in relation to the respiratory climacteric. Plant Physiol. 1967 Oct;42(10):1357–1362. doi: 10.1104/pp.42.10.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]