Abstract
The localization of some key enzymes leading to sucrose synthesis in photosynthetic tissue of C3 and C4 species was investigated. These included UDP-glucose (UDPG) pyrophosphorylase, sucrose phosphate synthetase, and glycerate kinase. Whether glycerate kinase is localized exclusively in the chloroplast or partly outside the chloroplast could influence the fate of carbon flow to sucrose through the glycolate pathway.
In the C3 species wheat, intact chloroplasts were isolated from protoplasts. Following separation of the chloroplasts by differential centrifugation and by sucrose density gradient centrifugation, UDPG pyrophosphorylase, sucrose phosphate synthetase, and sucrose synthetase were found outside the chloroplast while glycerate kinase was localized in the chloroplast.
In the C4 species (maize, NADP-malic enzyme-type; Panicum miliaceum, NAD-malic enzyme type and Brachiaria erucaeformis, phosphoenolpyruvate carboxykinase type) the distribution of UDPG pyrophosphorylase and glycerate kinase between mesophyll and bundle sheath cells and their intracellular localization in mesophyll protoplasts was determined. Substantial activity of UDPG pyrophosphorylase was found in both mesophyll and bundle sheath cells while glycerate kinase was localized only in mesophyll cells. From C4 mesophyll protoplasts, UDPG pyrophosphorylase was found to be cytoplasmic while glycerate kinase appears exclusively localized in the chloroplasts as determined by differential centrifugation and sucrose density gradients.
It seems that in both C3 and C4 plants, the terminal steps of sucrose synthesis occur exclusively in the cytoplasm while carbon flow in the glycolate pathway to sucrose must occur through glycerate kinase in the chloroplasts. The localization of glycerate kinase in mesophyll cells of C4 plants may have further implications for intercellular flow of carbon during metabolism in the glycolate pathway in these species.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRD I. F., PORTER H. K., STOCKING C. R. INTRACELLULAR LOCALISATION OF ENZYMES ASSOCIATED WITH SUCROSE SYNTHESIS IN LEAVES. Biochim Biophys Acta. 1965 May 4;100:366–375. doi: 10.1016/0304-4165(65)90005-x. [DOI] [PubMed] [Google Scholar]
- CARDINI C. E., LELOIR L. F., CHIRIBOGA J. The biosynthesis of sucrose. J Biol Chem. 1955 May;214(1):149–155. [PubMed] [Google Scholar]
- Edwards G. E., Robinson S. P., Tyler N. J., Walker D. A. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 1978 Aug;62(2):313–319. doi: 10.1104/pp.62.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEBER U., WILLENBRINK J. SITES OF SYNTHESIS AND TRANSPORT OF PHOTOSYNTHETIC PRODUCTS WITHIN THE LEAF CELL. Biochim Biophys Acta. 1964 Feb 10;82:313–324. doi: 10.1016/0304-4165(64)90302-2. [DOI] [PubMed] [Google Scholar]
- Haq S., Hassid W. Z. Biosynthesis of sucrose phosphate with sugar cane leaf chloroplasts. Plant Physiol. 1965 Jul;40(4):591–594. doi: 10.1104/pp.40.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch M. D. A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Anal Biochem. 1978 Mar;85(1):271–275. doi: 10.1016/0003-2697(78)90299-3. [DOI] [PubMed] [Google Scholar]
- Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
- Kanai R., Edwards G. E. Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies. Plant Physiol. 1973 Jun;51(6):1133–1137. doi: 10.1104/pp.51.6.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LELOIR L. F., CARDINI C. E. The biosynthesis of sucrose phosphate. J Biol Chem. 1955 May;214(1):157–165. [PubMed] [Google Scholar]
- Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmond C. B., Harris B. Photorespiration during C 4 photosynthesis. Biochim Biophys Acta. 1971 May 11;234(2):270–282. doi: 10.1016/0005-2728(71)90082-x. [DOI] [PubMed] [Google Scholar]
- RABSON R., TOLBERTNE, KEARNEY P. C. Formation of serine and glyceric acid by the glycolate pathway. Arch Biochem Biophys. 1962 Jul;98:154–163. doi: 10.1016/0003-9861(62)90161-3. [DOI] [PubMed] [Google Scholar]
- Spalding M. H., Schmitt M. R., Ku S. B., Edwards G. E. Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum. Plant Physiol. 1979 Apr;63(4):738–743. doi: 10.1104/pp.63.4.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallsgrove R. M., Lea P. J., Miflin B. J. Distribution of the Enzymes of Nitrogen Assimilation within the Pea Leaf Cell. Plant Physiol. 1979 Feb;63(2):232–236. doi: 10.1104/pp.63.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
