Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Jun;65(6):1139–1145. doi: 10.1104/pp.65.6.1139

Effect of ATPase Inhibitors on Cell Potential and K+ Influx in Corn Roots 1

John M Cheeseman 1, Peter R Lafayette 1, John W Gronewald 1, John B Hanson 1
PMCID: PMC440498  PMID: 16661348

Abstract

Experiments were performed to determine the effect of plasmalemma ATPase inhibitors on cell potentials (Ψ) and K+ (86Rb) influx of corn root tissue over a wide range of K+ activity. N,N′Dicyclohexylcarbodiimide (DCCD), oligomycin, and diethylstilbestrol (DES) pretreatment greatly reduced active K+ influx and depolarized Ψ at low, but not at high, K+ activity (K°). More comprehensive studies with DCCD and anoxia showed nearly complete inhibition of the active component of K+ influx over a wide range of K°, with no effect on the apparent permeability constant. DCCD had no effect on the electrogenic component of the cell potential (Ψp) above 0.2 millimolar K°. Net proton efflux was rapidly reduced 80 to 90% by DCCD. Since tissue ATP content and respiration were only slightly affected by the DCCD-pretreatment, the inhibitions of active K+ influx and Ψp at low K° can be attributed to inhibition of the plasmalemma ATPase.

It is concluded that by DCCD treatment, the energy-linked electrogenic system at high K° is separated from the energy-linked K+ influx system at low K°. The results are analyzed in terms of electrical analogue models of the membrane. The presence of two, algebraically additive electrogenic components is indicated; one is better modeled as a current source (system I) and one as a voltage source (system II). No K+ stimulation of system II is required to produce the observed K° dependence of Ψp.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke N. E., Hodges T. K. Comparison of Reductions in Adenosine Triphosphate Content, Plasma Membrane-associated Adenosine Triphosphatase Activity, and Potassium Absorption in Oat Roots by Diethylstilbestrol. Plant Physiol. 1979 Jan;63(1):53–56. doi: 10.1104/pp.63.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balke N. E., Hodges T. K. Effect of diethylstilbestrol on ion fluxes in oat roots. Plant Physiol. 1979 Jan;63(1):42–47. doi: 10.1104/pp.63.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman B. J., Mainzer S. E., Allen K. E., Slayman C. W. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta. 1978 Sep 11;512(1):13–28. doi: 10.1016/0005-2736(78)90214-6. [DOI] [PubMed] [Google Scholar]
  4. Bowman B. J., Slayman C. W. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1979 Apr 25;254(8):2928–2934. [PubMed] [Google Scholar]
  5. Byington K. H., Smoly J. M., Morey A. V., Green D. E. On the fragmentation of mitochondria by diethylstilbesterol. I. Conditions for maximizing fragmentation. Arch Biochem Biophys. 1968 Dec;128(3):762–773. doi: 10.1016/0003-9861(68)90085-4. [DOI] [PubMed] [Google Scholar]
  6. Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide inhibits proton translocation by cytochrome c oxidase. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1044–1051. doi: 10.1016/s0006-291x(79)80013-3. [DOI] [PubMed] [Google Scholar]
  7. Cheeseman J. M., Hanson J. B. Energy-linked Potassium Influx as Related to Cell Potential in Corn Roots. Plant Physiol. 1979 Nov;64(5):842–845. doi: 10.1104/pp.64.5.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheeseman J. M., Hanson J. B. Mathematical analysis of the dependence of cell potential on external potassium in corn roots. Plant Physiol. 1979 Jan;63(1):1–4. doi: 10.1104/pp.63.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gauthier L. M., Diwan J. J. Inhibition of K+ flux into rat liver mitochondria by dicyclohexylcarbodiimide. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1072–1079. doi: 10.1016/s0006-291x(79)80017-0. [DOI] [PubMed] [Google Scholar]
  11. Gronewald J. W., Cheeseman J. M., Hanson J. B. Comparison of the responses of corn root tissue to fusicoccin and washing. Plant Physiol. 1979 Feb;63(2):255–259. doi: 10.1104/pp.63.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahn J. S., Hanson J. B. The Effect of Calcium on Potassium Accumulation in Corn and Soybean Roots. Plant Physiol. 1957 Jul;32(4):312–316. doi: 10.1104/pp.32.4.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keifer D. W., Spanswick R. M. Activity of the Electrogenic Pump in Chara corallina as Inferred from Measurements of the Membrane Potential, Conductance, and Potassium Permeability. Plant Physiol. 1978 Oct;62(4):653–661. doi: 10.1104/pp.62.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kitasato H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol. 1968 Jul;52(1):60–87. doi: 10.1085/jgp.52.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozlov I. A., Skulachev V. P. H+-Adenosine triphosphatase and membrane energy coupling. Biochim Biophys Acta. 1977 Jun 21;463(1):29–89. doi: 10.1016/0304-4173(77)90003-9. [DOI] [PubMed] [Google Scholar]
  16. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leonard R. T., Hotchkiss C. W. Cation-stimulated Adenosine Triphosphatase Activity and Cation Transport in Corn Roots. Plant Physiol. 1976 Sep;58(3):331–335. doi: 10.1104/pp.58.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin W., Hanson J. B. Cell potentials, cell resistance, and proton fluxes in corn root tissue: effects of dithioerythritol. Plant Physiol. 1976 Sep;58(3):276–282. doi: 10.1104/pp.58.3.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin W., Hanson J. B. Phosphate absorption rates and adenosine 5'-triphosphate concentrations in corn root tissue. Plant Physiol. 1974 Sep;54(3):250–256. doi: 10.1104/pp.54.3.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malone C. P., Burke J. J., Hanson J. B. Histochemical Evidence for the Occurrence of Oligomycin-sensitive Plasmalemma ATPase in Corn Roots. Plant Physiol. 1977 Dec;60(6):916–922. doi: 10.1104/pp.60.6.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ryan T. E., Barr C. E., Zorn J. P. Potassium transference in Nitella. J Gen Physiol. 1978 Aug;72(2):203–218. doi: 10.1085/jgp.72.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schoner W., Schmidt H. Inhibition of (Na(+) + K(+))-activated ATPase by N,N'-dicyclohexylcarbodiimide. FEBS Lett. 1969 Nov 29;5(4):285–287. doi: 10.1016/0014-5793(69)80369-8. [DOI] [PubMed] [Google Scholar]
  23. Spanswick R. M. Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K + , Na + , light and temperature on the membrane potential and resistance. Biochim Biophys Acta. 1972 Oct 23;288(1):73–89. doi: 10.1016/0005-2736(72)90224-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES