Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Jun;65(6):1224–1228. doi: 10.1104/pp.65.6.1224

Incorporation and Degradation of 14C and 3H-labeled Thymidine by Sugarcane Cells in Suspension Culture 1,2

Stanley M Lesley 1,2, Andrew Maretzki 1,2, Louis G Nickell 1,2,3
PMCID: PMC440515  PMID: 16661365

Abstract

Sugarcane cells growing in suspension culture degrade exogenous thymidine, releasing thymine. Thymine is not utilized for DNA synthesis. Thymine is rapidly catabolized to β-aminoisobutyric acid which is found within the cell. Thymidine in the medium is used for DNA synthesis. The label of [2-14C]thymidine is lost as 14CO2, but the label of [3H]methylthymidine is found in the cell as [3H]β-aminoisobutyric acid, some of which is used for the synthesis of other cell components. The degradation of thymidine can be partially inhibited by addition of certain substituted pyrimidines.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendich A. J., Bolton E. T. Relatedness Among Plants as Measured by the DNA-Agar Technique. Plant Physiol. 1967 Jul;42(7):959–967. doi: 10.1104/pp.42.7.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper R. A., Perry S., Breitman T. R. Pyrimidine metabolism in human leukocytes. I. Contribution of exogenous thymidine to DNA-thymine and its effect on thymine nucleotide synthesis in leukemic leukocytes. Cancer Res. 1966 Nov;26(11):2267–2275. [PubMed] [Google Scholar]
  3. Dashe S. W., Howell S. H. Cautionary note on the use of [methyl-3H]thymidine to measure rates of chloroplast DNA synthesis in Chlamydomonas reinhardtii. J Cell Biol. 1976 Apr;69(1):215–218. doi: 10.1083/jcb.69.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans W. R., Axelrod B. Pyrimidine metabolism in germinating seedlings. Plant Physiol. 1961 Jan;36(1):9–13. doi: 10.1104/pp.36.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FINK K., CLINE R. E., HENDERSON R. B., FINK R. M. Metabolism of thymine (methyl-C14 or -2-C14) by rat liver in vitro. J Biol Chem. 1956 Jul;221(1):425–433. [PubMed] [Google Scholar]
  6. Harland J., Jackson J. F., Yeoman M. M. Changes in some enzymes involved in DNA biosynthesis following induction of division in cultured plant cells. J Cell Sci. 1973 Jul;13(1):121–138. doi: 10.1242/jcs.13.1.121. [DOI] [PubMed] [Google Scholar]
  7. Hotta Y., Stern H. Analysis of DNA synthesis during meiotic prophase in Lilium. J Mol Biol. 1971 Feb 14;55(3):337–355. doi: 10.1016/0022-2836(71)90322-6. [DOI] [PubMed] [Google Scholar]
  8. Kammen H. O., Strand M. Thymine metabolism in Escherichia coli. II. Altered uptake of thymine after bacteriophage infection. J Biol Chem. 1967 Apr 25;242(8):1854–1863. [PubMed] [Google Scholar]
  9. Ohyama K. Properties of 5-bromodeoxyuridine-resistant lines of higher plant cells in liquid culture. Exp Cell Res. 1974 Nov;89(1):31–38. doi: 10.1016/0014-4827(74)90183-9. [DOI] [PubMed] [Google Scholar]
  10. SAGAN L. AN UNUSUAL PATTERN OF TRITIATED THYMIDINE INCORPORATION IN EUGLENA. J Protozool. 1965 Feb;12:105–109. doi: 10.1111/j.1550-7408.1965.tb01822.x. [DOI] [PubMed] [Google Scholar]
  11. TAKATS S. T., SMELLIE R. M. Thymidine degradation products in plant tissues labeled with tritiated thymidine. J Cell Biol. 1963 Apr;17:59–66. doi: 10.1083/jcb.17.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Youdale T., MacManus J. P. Failure of tritiated thymidine incorporation into DNA to reflect the autoradiographically demonstrable calcium-induced increase in thymic lymphoblast DNA synthesis. J Cell Physiol. 1975 Dec;86(3 Pt 1):495–502. doi: 10.1002/jcp.1040860306. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES