Abstract
A method, based on the diffusion assay of α-amylase on agar plates, was developed to screen for barley (Himalaya) mutants with altered sensitivity to gibberellic acid (GA3) or abscisic acid (ABA) in their aleurone layers. The seeds produced by sodium azide-mutagenized barley were screened for their ability to synthesize and secrete α-amylase when treated with different combinations of hormones. Various GA3-insensitive or supersensitive, ABA-insensitive, temperature-dependent GA3-insensitive, and constitutive mutants have been identified. Several stable mutants with altered GA3 sensitivity were recovered. Two of the homozygous GA3-insensitive mutants have been preliminarily characterized. The GA3-enhanced production of α-amylase and release of phosphatase are hampered in these mutants. However, they have normal stem height, and the uptake of GA3 by their aleurone layers appears to be the same as that of wild-type barley. They are most likely regulatory mutants affecting both α-amylase synthesis and phosphatase release.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chrispeels M. J., Varner J. E. Hormonal control of enzyme synthesis: on the mode of action of gibberellic Acid and abscisin in aleurone layers of barley. Plant Physiol. 1967 Jul;42(7):1008–1016. doi: 10.1104/pp.42.7.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fick G. N., Qualset C. O. Genetic control of endosperm amylase activity and gibberellic Acid responses in standard-height and short-statured wheats. Proc Natl Acad Sci U S A. 1975 Mar;72(3):892–895. doi: 10.1073/pnas.72.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho D. T. Response of barley aleurone layers to abscisic Acid. Plant Physiol. 1976 Feb;57(2):175–178. doi: 10.1104/pp.57.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho D. T., Varner J. E. Hormonal control of messenger ribonucleic acid metabolism in barley aleurone layers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4783–4786. doi: 10.1073/pnas.71.12.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen J. V., Zwar J. A. Gibberellic acid causes increased synthesis of RNA which contains poly(A) in barley aleurone tissue. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3290–3293. doi: 10.1073/pnas.71.8.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Phinney B. O. GROWTH RESPONSE OF SINGLE-GENE DWARF MUTANTS IN MAIZE TO GIBBERELLIC ACID. Proc Natl Acad Sci U S A. 1956 Apr;42(4):185–189. doi: 10.1073/pnas.42.4.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tal M., Imber D. Abnormal Stomatal Behavior and Hormonal Imbalance in flacca, a Wilty Mutant of Tomato: II. Auxin- and Abscisic Acid-like Activity. Plant Physiol. 1970 Sep;46(3):373–376. doi: 10.1104/pp.46.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varner J. E., Mense R. M. Characteristics of the process of enzyme release from secretory plant cells. Plant Physiol. 1972 Feb;49(2):187–189. doi: 10.1104/pp.49.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]