Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Jul;66(1):182–186. doi: 10.1104/pp.66.1.182

In Vitro Incorporation of Selenomethionine into Protein by Vigna radiata Polysomes

David C Eustice 1, Ian Foster 1, Frederick J Kull 1, Alex Shrift 1,1
PMCID: PMC440554  PMID: 16661384

Abstract

Vigna radiata polysomes efficiently incorporated [75Se]selenomethionine, [14C]methionine, and [14C]leucine in vitro. The optimal conditions for translation were determined to be 4.8 millimolar Mg2+, 182 millimolar K+, and pH 7.4. The rates of incorporation of [75Se]selenomethionine and [14C]methionine were similar when measured separately, but [75Se]selenomethionine incorporation was 35% less than [14C]methionine incorporation when both amino acids were present in equal molar concentrations. Polyacrylamide gel electrophoresis of the hot trichloroacetic acid precipitable translation products demonstrated synthesis of high molecular weight labeled proteins in the presence of [75Se]selenomethionine or [35S]methionine. No major differences in molecular weights could be detected in the electrophoretic profiles. Utilization of selenomethionine during translation by Vigna radiata polysomes establishes a route for the assimilation of selenomethionine by plants susceptible to selenium toxicity.

Full text

PDF
182

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beachy R. N., Thompson J. F., Madison J. T. Isolation of polyribosomes and messenger RNA active in in vitro synthesis of soybean seed proteins. Plant Physiol. 1978 Feb;61(2):139–144. doi: 10.1104/pp.61.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burnell J. N. Cysteinyl-tRNA Synthetase from Astragalus Species. Plant Physiol. 1979 Jun;63(6):1095–1097. doi: 10.1104/pp.63.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnell J. N. Cysteinyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties. Plant Physiol. 1977 Nov;60(5):670–674. doi: 10.1104/pp.60.5.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Enoch H. G., Lester R. L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed] [Google Scholar]
  6. Forstrom J. W., Zakowski J. J., Tappel A. L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978 Jun 27;17(13):2639–2644. doi: 10.1021/bi00606a028. [DOI] [PubMed] [Google Scholar]
  7. Fowden L., Lewis D., Tristram H. Toxic amino acids: their action as antimetabolites. Adv Enzymol Relat Areas Mol Biol. 1967;29:89–163. doi: 10.1002/9780470122747.ch3. [DOI] [PubMed] [Google Scholar]
  8. Huber R. E., Criddle R. S. The isolation and properties of beta-galactosidase from Escherichia coli grown on sodium selenate. Biochim Biophys Acta. 1967 Aug 29;141(3):587–599. doi: 10.1016/0304-4165(67)90187-0. [DOI] [PubMed] [Google Scholar]
  9. Jackson A. O., Larkins B. A. Influence of Ionic Strength, pH, and Chelation of Divalent Metals on Isolation of Polyribosomes from Tobacco Leaves. Plant Physiol. 1976 Jan;57(1):5–10. doi: 10.1104/pp.57.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jenkins K. J., Hidiroglou M. The incorporation of 75-Se-selenite into dystrophogenic pasture grass. The chemical nature of the seleno compounds formed and their availability to young ovine. Can J Biochem. 1967 Jul;45(7):1027–1039. doi: 10.1139/o67-119. [DOI] [PubMed] [Google Scholar]
  11. Kaempfer R., Rosen H., Israeli R. Translational control: recognition of the methylated 5' end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNAfMet. Proc Natl Acad Sci U S A. 1978 Feb;75(2):650–654. doi: 10.1073/pnas.75.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konze J. R., Kende H. Interactions of Methionine and Selenomethionine with Methionine Adenosyltransferase and Ethylene-generating Systems. Plant Physiol. 1979 Mar;63(3):507–510. doi: 10.1104/pp.63.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konze J. R., Schilling N., Kende H. Enhancement of ethylene formation by selenoamino acids. Plant Physiol. 1978 Sep;62(3):397–401. doi: 10.1104/pp.62.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lodish H. F. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39–72. doi: 10.1146/annurev.bi.45.070176.000351. [DOI] [PubMed] [Google Scholar]
  15. Marcu K., Dudock B. Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic Acids Res. 1974 Nov;1(11):1385–1397. doi: 10.1093/nar/1.11.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McConnell K. P., Hoffman J. L. Methionine-selenomethionine parallels in E. coli polypeptide chain initiation and synthesis. Proc Soc Exp Biol Med. 1972 Jun;140(2):638–641. doi: 10.3181/00379727-140-36520. [DOI] [PubMed] [Google Scholar]
  17. Peterson P. J. Amino acid selection in protein biosynthesis. Biol Rev Camb Philos Soc. 1967 Nov;42(4):552–613. doi: 10.1111/j.1469-185x.1967.tb01530.x. [DOI] [PubMed] [Google Scholar]
  18. Tanaka H., Stadtman T. C. Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components. J Biol Chem. 1979 Jan 25;254(2):447–452. [PubMed] [Google Scholar]
  19. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES