Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Aug;66(2):199–204. doi: 10.1104/pp.66.2.199

Glycosidic Enzyme Activity in Pea Tissue and Pea-Fusarium solani Interactions 1,2

Everett J Nichols 1, Jean M Beckman 1, Lee A Hadwiger 1
PMCID: PMC440565  PMID: 16661404

Abstract

Membrane barriers which prevent direct contact between Fusarium solani and pea endocarp tissue prevent fungal spores from inducing phytoalexin production. Conversely, preinduced host resistance responses are not readily transported from the plant across the membrane barrier to Fusarium macroconidia.

Crude enzyme extracts from pea endocarp tissues partially degrade Fusarium solani f. sp. phaseoli cell walls. Activities of the glycosidic enzymes, chitinase, β-1,3-glucanase, chitosanase, β-D-N-acetylglucosaminidase, β-D-N-acetylgalactosaminidase, β-D-glucosidase, α-D-glucosidase, and α-D-mannosidase, were detected in pea endocarp tissue. If pods are challenged with Fusarium spores or chitosan, the chitinase activity of the infected tissue remains higher than water-treated pods 0.5 to 6 hours after treatment. The β-1,3-glucanase activity increases within 6 hours in both inoculated and control tissue. Chitosanase activity was lower in tissue treated with Fusarium solani f. sp. pisi, f. sp. phaseoli or chitosan than in water-treated control tissue. Thus, the pea tissue contains glycosidic enzymes with the potential to degrade the major compounds of the Fusarium cell walls.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B., Forrence L. E. Temporal and hormonal control of beta-1,3-glucanase in Phaseolus vulgaris L. Plant Physiol. 1970 Apr;45(4):395–400. doi: 10.1104/pp.45.4.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal K. M., Bahl O. P. Glycosidases of Phaseolus vulgaris. II. Isolation and general properties. J Biol Chem. 1968 Jan 10;243(1):103–111. [PubMed] [Google Scholar]
  3. Bahl O. P., Agrawal K. M. Glycosidases of Phaseolus vulgaris. I. Isolation and characterization of beta-N-acetylglucosaminidase. J Biol Chem. 1968 Jan 10;243(1):98–102. [PubMed] [Google Scholar]
  4. Glazer A. N., Barel A. O., Howard J. B., Brown D. M. Isolation and characterization of fig lysozyme. J Biol Chem. 1969 Jul 10;244(13):3583–3589. [PubMed] [Google Scholar]
  5. Goff C. G. Histones of Neurospora crassa. J Biol Chem. 1976 Jul 10;251(13):4131–4138. [PubMed] [Google Scholar]
  6. Gottlieb C., Baenziger J., Kornfeld S. Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J Biol Chem. 1975 May 10;250(9):3303–3309. [PubMed] [Google Scholar]
  7. Howard J. B., Glazer A. N. Studies of the physicochemical and enzymatic properties of papaya lysozyme. J Biol Chem. 1967 Dec 25;242(24):5715–5723. [PubMed] [Google Scholar]
  8. Morgan W. T., Elson L. A. A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem J. 1934;28(3):988–995. doi: 10.1042/bj0280988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. POWNING R. F., IRZYKIEWICZ H. STUDIES ON THE CHITINASE SYSTEM IN BEAN AND OTHER SEEDS. Comp Biochem Physiol. 1965 Jan;14:127–133. doi: 10.1016/0010-406x(65)90013-7. [DOI] [PubMed] [Google Scholar]
  10. RONDLE C. J., MORGAN W. T. The determination of glucosamine and galactosamine. Biochem J. 1955 Dec;61(4):586–589. doi: 10.1042/bj0610586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Skujins J. J., Potgieter H. J., Alexander M. Dissolution of fungal cell walls by a streptomycete chitinase and beta-(1-3) glucanase. Arch Biochem Biophys. 1965 Aug;111(2):358–364. doi: 10.1016/0003-9861(65)90197-9. [DOI] [PubMed] [Google Scholar]
  12. Teasdale J., Daniels D., Davis W. C., Eddy R., Hadwiger L. A. Physiological and Cytological Similarities between Disease Resistance and Cellular Incompatibility Responses. Plant Physiol. 1974 Nov;54(5):690–695. doi: 10.1104/pp.54.5.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES