Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Sep;66(3):433–437. doi: 10.1104/pp.66.3.433

Evidence that Auxin-induced Growth of Soybean Hypocotyls Involves Proton Excretion 1

David L Rayle 1,2, Robert E Cleland 1,2
PMCID: PMC440648  PMID: 16661450

Abstract

The role of H+ excretion in auxin-induced growth of soybean hypocotyl tissues has been investigated, using tissues whose cuticle was rendered permeable to protons or buffers by scarification (scrubbing). Indoleacetic acid induces both elongation and H+ excretion after a lag of 10 to 12 minutes. Cycloheximide inhibits growth and causes the tissues to remove protons from the medium. Neutral buffers (pH 7.0) inhibit auxin-induced growth of scrubbed but not intact sections; the inhibition increases as the buffer strength is increased. Both live and frozen-thawed sections, in the absence of auxin, extend in response to exogenously supplied protons. Fusicoccin induces both elongation and H+ excretion at rates greater than does auxin. These results indicate that H+ excretion is involved in the initiation of auxin-induced elongation in soybean hypocotyl tissue.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleland R. E. Hydrogen Ion Entry as a Controlling Factor in the Acid-growth Response of Green Pea Stem Sections. Plant Physiol. 1975 Mar;55(3):547–549. doi: 10.1104/pp.55.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleland R. E. Kinetics of Hormone-induced H Excretion. Plant Physiol. 1976 Aug;58(2):210–213. doi: 10.1104/pp.58.2.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mentze J., Raymond B., Cohen J. D., Rayle D. L. Auxin-induced H Secretion in Helianthus and Its Implications. Plant Physiol. 1977 Oct;60(4):509–512. doi: 10.1104/pp.60.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Parrish D. J., Davies P. J. On the Relationship between Extracellular pH and the Growth of Excised Pea Stem Segments. Plant Physiol. 1977 Apr;59(4):574–578. doi: 10.1104/pp.59.4.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rayle D. L., Cleland R. Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol. 1977;11:187–214. doi: 10.1016/s0070-2153(08)60746-2. [DOI] [PubMed] [Google Scholar]
  6. Vanderhoef L. N., Findley J. S., Burke J. J., Blizzard W. E. Auxin Has No Effect on Modification of External pH by Soybean Hypocotyl Cells. Plant Physiol. 1977 May;59(5):1000–1003. doi: 10.1104/pp.59.5.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Vanderhoef L. N., Lu T. Y., Williams C. A. Comparison of Auxin-induced and Acid-induced Elongation in Soybean Hypocotyl. Plant Physiol. 1977 May;59(5):1004–1007. doi: 10.1104/pp.59.5.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES