Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Sep;66(3):457–462. doi: 10.1104/pp.66.3.457

Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway 1

Pierre Rustin 1, François Moreau 1, Claude Lance 1
PMCID: PMC440653  PMID: 16661455

Abstract

Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.

Full text

PDF
457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunton C. J., Palmer J. M. Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem. 1973 Nov 1;39(1):283–291. doi: 10.1111/j.1432-1033.1973.tb03125.x. [DOI] [PubMed] [Google Scholar]
  2. Coleman J. O., Palmer J. M. The oxidation of malate by isolated plant mitochondria. Eur J Biochem. 1972 Apr 24;26(4):499–509. doi: 10.1111/j.1432-1033.1972.tb01792.x. [DOI] [PubMed] [Google Scholar]
  3. Comte J., Gautheron D. C. The markers of pig heart mitochondrial sub-fractions. II. - On the association of malate dehydrogenase with inner membrane. Biochimie. 1978;60(11-12):1298–1305. [PubMed] [Google Scholar]
  4. Day D. A., Wiskich J. T. The oxidation of malate and exogenous reduced nicotinamide adenine dinucleotide by isolated plant mitochondria. Plant Physiol. 1974 Jan;53(1):104–109. doi: 10.1104/pp.53.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Douce R., Bonner W. D., Jr Oxalacetate control of Krebs cycle oxidations in purified plant mitochondria. Biochem Biophys Res Commun. 1972 May 12;47(3):619–624. doi: 10.1016/0006-291x(72)90923-0. [DOI] [PubMed] [Google Scholar]
  6. Douce R., Moore A. L., Neuburger M. Isolation and oxidative properties of intact mitochondria isolated from spinach leaves. Plant Physiol. 1977 Oct;60(4):625–628. doi: 10.1104/pp.60.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lance C., Hobson G. E., Young R. E., Biale J. B. Metabolic processes in cytoplasmic particles of the avocado fruit. IX. The oxidation of pyruvate and malate during the climacteric cycle. Plant Physiol. 1967 Apr;42(4):471–478. doi: 10.1104/pp.42.4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Macrae A. R. Isolation and properties of a 'malic' enzyme from cauliflower bud mitochondria. Biochem J. 1971 May;122(4):495–501. doi: 10.1042/bj1220495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Macrae A. R., Moorhouse R. The oxidation of malate by mitochondria isolated from cauliflower buds. Eur J Biochem. 1970 Sep;16(1):96–102. doi: 10.1111/j.1432-1033.1970.tb01058.x. [DOI] [PubMed] [Google Scholar]
  10. Moreau F., Lance C. Isolement et propriétés des membranes externes et internes de mitochondries végétales. Biochimie. 1972;54(10):1335–1348. doi: 10.1016/s0300-9084(72)80074-9. [DOI] [PubMed] [Google Scholar]
  11. Rustin P., Moreau F. Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1125–1131. doi: 10.1016/0006-291x(79)91525-0. [DOI] [PubMed] [Google Scholar]
  12. Storey B. T. Respiratory Chain of Plant Mitochondria: XVIII. Point of Interaction of the Alternate Oxidase with the Respiratory Chain. Plant Physiol. 1976 Oct;58(4):521–525. doi: 10.1104/pp.58.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Strasberg P. M., Webster K. A., Patel H. V., Freeman K. B. Binding of mitochondrial malate dehydrogenase to mitoplasts. Can J Biochem. 1979 Jun;57(6):662–665. doi: 10.1139/o79-083. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES