Skip to main content
Aging Cell logoLink to Aging Cell
. 2015 Feb 9;14(3):293–308. doi: 10.1111/acel.12312

Parkinson's disease as a result of aging

Manuel Rodriguez 1,2,, Clara Rodriguez-Sabate 2, Ingrid Morales 1,2, Alberto Sanchez 1, Magdalena Sabate 3
PMCID: PMC4406659  PMID: 25677794

Abstract

It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.

Keywords: aging, dopamine, nigrostriatal neurons, neurodegeneration, Parkinson's disease


Aging is characterized by a progressive decline of many physiological functions, an increased susceptibility to certain diseases, and an increase in the likelihood of death. It is a complex phenomenon that may be very diverse in the different animal species, in individuals of the same species, and in the different tissues of the same individual (Miller, 1999; Takubo et al., 2002; de Magalhaes & Costa, 2009). Although there are a number of different theories to explain the onset and progression of aging, it is generally accepted that aging is not the result of one single cause. The causal agents and the mechanisms that collaborate to produce aging can be divided into two groups: passive agents inducing tissue damage which are not properly repaired and which accumulate throughout life (damage-based theories), and genetic agents that actively alter the physiological behavior of cells (programmed theories). Both theory types generally assume that aging is a multifactor phenomenon where the equilibrium between cell damage and cell repair is progressively lost throughout life (multifactor hypothesis). This imbalance is not evoked in the brain in the same way in the different cell types, with the glial and the neuronal subgroups comprising each center showing a different aging rate (Going et al., 2002; Jeyapalan & Sedivy, 2008). This study revises the information available about a subgroup of neurons [dopamine neuron (DAn)] of a mesencephalic center [substantia nigra (SN)] which is involved in a neurodegenerative illness [Parkinson's disease (PD)]. PD is generally considered as a single clinical entity with a specific etiopathogenesis. The possibility that PD could be the consequence of the degeneration of neurons which are particularly vulnerable to aging processes is discussed here.

PD and aging

PD is a slow-progression neurodegenerative disorder with a high incidence in aged people. Aging is the greatest risk factor for PD (Driver et al., 2009; Collier et al., 2011), and the incidence of the illness in people over the age of sixty increases in an exponential way (Driver et al., 2009). Tables of the trends in the health of the older population in the United States show that PD is present in 0.02% of people who died between 45 and 54 years of age and in 8.77% of people who died over 85 years of age. The prevalence of other diseases (e.g. heart disease or Alzheimer's disease) also increases with aging, but none of them show the marked increase found in PD whose prevalence increases more than 400 times with aging. In addition, aging has been considered as the most important determinant of the clinical worsening of patients with PD, even when compared with variables such as disease duration (Levy, 2007; Collier et al., 2011). The response to treatments (e.g. levodopa) is also hampered by the advanced age (Levy, 2007). Thus, aging is a variable which is always present in PD.

The marked influence of aging on PD could explain the scarce information referring to the illness before the 19th century (there are a few documents from ancient India and Greece and from the middle ages in Europe referring to parkinsonian signs with names such as kampavata, paradoxos, and shaking palsy). The initial mortality rate (mortality rate independent of aging) was high before the 19th century, and most people did not reach the age where the incidence of PD becomes relevant. Life expectancy increased in such a way during the 19th century as to attract the attention of James Parkinson (1817). This increase was spectacular during the 20th century, making PD a very important health problem which in the USA alone affects 59 000 new people every year (Hirtz et al., 2007; Driver et al., 2009; Wirdefeldt et al., 2011).

Degeneration of dopamine cells in PD and aging

Neurodegeneration in PD occurs in different brain centers that also degenerate with age (locus coeruleus, pedunculopontine nucleus, etc.; Lohr & Jeste, 1988; Ransmayr et al., 2000; Shibata et al., 2006). The mechanisms involved in the degeneration of these centers are not very well known, which limits the possibility of comparing the PD and aging neurodegeneration in these centers. This is not the case of SN cells whose degeneration is currently considered as the hallmark of PD and whose change with aging has been extensively documented. Thus, most comments in this review will be focused on the neuronal degeneration in the SN.

The initial studies showing neurodegeneration in the SN of patients with PD also reported a marked neuronal loss in the SN of the healthy subjects included in the control groups of these studies (Hirai, 1968; McGeer et al., 1977; Stark & Pakkenberg, 2004; Mortera & Herculano-Houzel, 2012). These studies were focused on the SN because this center loses its characteristic dark gray color in the PD brain, which is normally produced by the accumulation of the pigment neuromelanin in a subgroup of SN neurons. PD showed a decrease in nigral pigmented neurons (Hirsch et al., 1988, 1989; Fearnley & Lees, 1991), which suggested that the selective degeneration of these cells could be a feature of this illness and that neuromelanin may be involved in this degeneration (Hirsch et al., 1988). However, healthy aged subjects also showed a decrease in pigmented cells (7-10% decrease per decade) (McGeer et al., 1988; Ma et al., 1999; Cabello et al., 2002; Stark & Pakkenberg, 2004; Fedorow et al., 2005; Halliday et al., 2006; Double et al., 2008; Rudow et al., 2008), suggesting that if neuromelanin was involved in PD, it could also be involved in aging-related neurodegeneration.

The neuromelanin accumulation in the SN neuron (SNn) is the result of dopamine (DA) oxidation, which, together with the therapeutic effects of levodopa therapy in PD and the DA decrease found in the striatum of these patients (Hornykiewicz, 2008, 2010), suggested the DAn degeneration as the basis of PD. The neuromelanin+ neuron count is not the best way to estimate the number of DAn because the pigment slowly accumulates throughout life (which hampers the identification of DAn in young subjects) and because a portion of DAn can suffer a de-differentiation in PD (which means that the number of neuromelanin+ cells can be higher than those expressing a dopaminergic phenotype; Gonzalez-Hernandez et al., 2004; Kordower et al., 2013). Immunohistochemical markers to detect proteins involved in the synthesis (e.g. tyrosine hydroxylase and l-dopa decarboxylase), degradation (monoamine oxidase), and membrane transport (dopamine transporter (DAT)) of DA proved to be a better procedure to estimate the number of DA neurons. Different studies in patients with PD reported neurodegeneration of SN cells expressing DAT (McGeer et al., 1977; Kastner et al., 1993; Miller et al., 1999; Chu et al., 2006; Rudow et al., 2008; Kordower et al., 2013; Ishibashi et al., 2014) and the enzymatic machinery necessary for the degradation of DA (Lloyd & Hornykiewicz, 1970; Grote et al., 1974; Robinson et al., 1977; Saura et al., 1997). This cell loss is often considered as being selective for PD and is generally used as the keystone to diagnose the illness with positron emission tomography and other methods. However, most studies also found a DAn loss in the SN of healthy aged subjects, with the quantity of the cell loss being the main difference between PD and aging. The nigral distribution of the DAn degeneration has also been proposed as being selective for PD, with the ventral tier of the posterior and lateral regions of the SN compacta showing the highest degeneration rate (Fearnley & Lees, 1991; Damier et al., 1999; Rodriguez Diaz et al., 2001; Rodriguez et al., 2001). However, this DAn subgroup has also shown the highest rate of degeneration in aged monkeys (Kanaan et al., 2008; Collier et al., 2011) and healthy aged humans (Reeve et al., 2014), suggesting that the distribution of DAn degeneration is not selective for PD either.

On the other hand, the DAn degeneration during aging is a common phenomenon observed in animals and humans (Collier et al., 2011). A recent work on 750 aged brains of subjects which never showed a clinically defined PD reported a marked DAn loss in more than 30% of cases, which in addition showed other pathological characteristics of PD such as the Lewy bodies (Buchman et al., 2012). Most nigral DA neurons project to the striatum, forming the nigrostriatal DAn (snDAn). system. It has been found that the slow degeneration of these cells with aging may last for years without inducing clinical signs of PD, signs which cannot be found when the snDAn degeneration does not involve more than 50% of these cells or more than 70% of their synaptic terminals in the striatum. Thus, the difference between PD and aging brains could be a question of quantity (number of DAn lost) more than a question of quality (the type of cell which degenerates) (McGeer et al., 1988).

Physiological changes of DAn in PD and aging

DA neurons may experience physiological changes during aging that are similar to those observed in these cells before their degeneration in PD. The striatal decrease of DA observed in PD has also been found in the aged brain where the DA level decreases 10–13% per decade of life (Carlsson & Winblad, 1976; Riederer & Wuketich, 1976; Kish et al., 1992). The topographic distribution of the striatal DAergic denervation observed in PD (Kish et al., 1988; Hornykiewicz, 1989) has also been reported in the aged brain (Kish et al., 1992; Haycock et al., 2003). There are indications that an increase in DA turnover might be an early compensatory mechanism for DAn degeneration in PD (Barrio et al., 1990; Rodriguez & Castro, 1991; Sossi et al., 2002). A similar compensatory mechanism has been proposed for the age-related loss of DAn (Greenwood et al., 1991). There is evidence suggesting that nsDAn surviving the SN degeneration may present a partial loss of their phenotypic characteristics in the PD (Kastner et al., 1993; Miller et al., 1999; Gonzalez-Hernandez et al., 2001, 2004; Chu et al., 2006), a fact that could explain why a portion of the melanin-positive SN neurons does not express TH or other dopaminergic markers in PD (Kordower et al., 2013). DAn degeneration probably begins in the distal axon and proceeds retrogradely (dying-back process) (Galvin et al., 1999; Cheng et al., 2010), inducing an early inhibition of the fast axonal transport (Coleman, 2005; Morfini et al., 2007; De Vos et al., 2008; Neukomm & Freeman, 2014) accompanied by a decreased expression of the dopaminergic phenotype (Bellinger et al., 2011; Cheng et al., 2011). A similar decrease in the dopaminergic phenotype has been found in the snDAn which survive to a partial degeneration of the nigrostriatal system (which may change its DAergic phenotype by a GABAergic phenotype) (Rodriguez & Gonzalez-Hernandez, 1999; Gonzalez-Hernandez et al., 2001), and in nigrostriatal cells of animals with a degeneration of the contralateral snDAn (Gonzalez-Hernandez et al., 2004). The phenotype of neurons may be also modified by aging (Tedroff et al., 1988; Volkow et al., 1996; Emborg et al., 1998; Mozley et al., 1999; Pirker et al., 2000; Gerhardt et al., 2002; Kanaan et al., 2007), a fact observed in SN neurons which gradually loss their DAergic phenotype with aging whereas preserve the cytoplasmic neuromelanin (McCormack et al., 2004). D1 and D2 dopamine receptors present a compensatory increase in the brain of untreated PD (Lee et al., 1978; Centonze et al., 2003), an event also found in the aged brain (Grote et al., 1974; Morgan et al., 1987; Suhara et al., 1991; Wang et al., 1998b) (although some inconsistent data have also been reported) (Hess et al., 1987; Suhara et al., 1991; Wang et al., 1998b). Thus, functional changes observed in the nsDAn surviving the PD neurodegeneration have also been found during healthy aging. Most of these changes are probably an attempt by the surviving neurons to compensate for the partial degeneration of the other DA neurons (increase of DA turnover and DA receptors) or to prevent their own degeneration (loss of phenotypic characteristics), thereby suggesting that the physiological response to the partial loss of the nsDAn system could be similar in the PD and aged brain.

Degeneration of nondopamine neurons in PD and aging

As mentioned above, the snDAn is not the only neuron which degenerates in PD. DA neurons of the ventral tegmental area and retrorubral field (..), and other neurons interconnected with these cells such as the noradrenergic neurons of the locus coeruleus (?), cholinergic neurons of the pedunculopontine nucleus (?), and glutamatergic neurons of the intralaminar thalamic nucleus (?), also degenerate in PD. In addition, PD neurodegeneration has been found in neurons not directly interacting with the snDAn, such as those of the myenteric plexus or the olfactory bulb. The mechanisms involved in the loss of non-DA neurons have been little studied, and there is evidence supporting the idea that PD degeneration begins in non-DA neurons and then progresses to DA neurons (Braak et al., 2003; Ferrer et al., 2011), but also supporting the possibility that the degeneration of non-DA neurons could be induced by the previous degeneration of DA neurons (Morales et al., 2013a,b). In any case, the parkinsonian degeneration observed in most non-DA neurons has also been found in the healthy aged brain (Iversen et al., 1983; Baker et al., 1989; Manaye et al., 1995; Arango et al., 1996; Ransmayr et al., 2000), which also presents the cytosolic aggregates reported in the PD brain (e.g. Lewy bodies) (Mann, 1983; Halliday, 2009). The systematic study of cases with protein aggregate pathology has prompted a staging classification of PD based on the putative progression of Lewy body pathology from the medulla oblongata and olfactory bulb to the midbrain, diencephalon, and neocortex (Braak et al., 2002, 2003; Muller et al., 2005; Braak et al., 2006). In the aforementioned proposals, the DAn degeneration is not substantial (<60% of cell loss) before stage 3 is reached, with stages 1 and 2 being characterized by the presence of aggregates outside the SN (e.g. myenteric plexus, dorsal IX/X motor nuclei, intermediate reticular zone, caudal raphe nuclei, locus coeruleus, and olfactory bulb) and by the existence of nonmotor clinical disturbances (Jellinger, 2002; Ferrer et al., 2011). Much research is being carried out to identify early nonmotor signs which can be used to diagnose PD during its premotor stages. This trial is hampered by the fact that most premotor clinical signs of PD (e.g. weight loss, olfactory dysfunctions, sleep fragmentation, constipation, and mood disorders) are also found in healthy aged subjects (Pfeiffer, 2003, 2010; Cersosimo & Benarroch, 2011; Doty, 2012). Thus, neither the degeneration of non-DA cells nor the presentation of nonmotor disturbances associated with it can clearly distinguish PD and aging (Double et al., 2010), suggesting that the degeneration of these cells may not be substantially different in aging and PD.

The involvement of non-neuronal cells in PD and aging

The anomalous activity of glial cells has been involved in the progression of PD. Although the glial dysfunctions of PD are frequently considered as being specific to the illness, most of them have also been observed in the aged brain. Both aged and PD brains present a low-level chronic inflammation (‘neuro-inflammaging') with complex changes in the activity of astrocytes and microglia (Franceschi et al., 2007; Chung et al., 2009). Both cells may produce detrimental effects on neighboring neurons due to chronic production of pro-inflammatory agents (ROS, leukocyte-attracting cytokines, etc.). However, both cells may also provide structural, metabolic, and trophic support to neurons (Allen & Barres, 2009; Chung et al., 2009; Nagelhus et al., 2013). This ambivalent activity is hampering the study of the role of the glial cells in PD.

Astrocytes are involved in a variety of physiological functions (Benarroch, 2009; Sofroniew & Vinters, 2010; Rodriguez et al., 2012) and whose deterioration has been linked to both PD and aging (Raivich et al., 1999; Sofroniew & Vinters, 2010; Belanger et al., 2011; Rodriguez et al., 2012; Morales et al., 2013a). These cells may behave in an opposing manner, promoting damage or providing protection to neurons. Astrocytes synthesize glutathione (Rice & Russo-Menna, 1998) whose release protects neighboring cells from oxidation (Hirrlinger et al., 2002), a protection which is lower in PD (Zeevalk et al., 2008). Astrocytes produce trophic factors (basic fibroblast growth factors, mesencephalic astrocyte-derived neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF), etc.) that protect the DAn from damage (Lin et al., 1993; Saavedra et al., 2006; Deierborg et al., 2008). In addition, astrocytes remove toxic molecules from the extracellular medium, including the α-synuclein that has escaped from axon terminals (which prevents its aggregation in DAn) (Braak et al., 2007; Song et al., 2009; Lee et al., 2010) and glutamate released from glutamatergic neurons (which prevents its excitotoxic action) (Rodriguez et al., 2012; Morales et al., 2013a,b). These protective activities decrease during aging. Astrocytes cultured from the brain of aging rats show morphologic and staining (e.g. beta-galactosidase.) patterns which are characteristic of senescence, reducing their ability to protect neurons (Mansour et al., 2008; Chinta et al., 2013). These senescent astrocytes are involved in the neuronal loss in the aged brain (Pertusa et al., 2007). Similarly, the neuroprotective actions of astrocytes decrease in PD (Mirza et al., 2000; Song et al., 2009), which shows a low level of glutathione in the SN (≈40%) (Sian et al., 1994) and an increased vulnerability of DAn to free radicals (Pearce et al., 1997). These facts are probably important for the onset and progression of PD (Halliday & Stevens, 2011).

On the other hand, astrocytes can actively induce neurodegeneration by different mechanisms, including the release of cytokines/TNFα (Lee et al., 2010) (e.g. in response to an excessive accumulation of α-synuclein) (Wakabayashi et al., 2000; Lee et al., 2010) and the release of glutamate (Morales & Rodriguez, 2012; Morales et al., 2013a,b). The astrocytic release of toxic agents can be facilitated by reactive astrogliosis, a global reaction of astrocytes to brain damage (Sofroniew & Vinters, 2010). Reactive gliosis has also been implicated in the deterioration of both the aging (Goss et al., 1991; Kohama et al., 1995; Hayakawa et al., 2007; Lynch et al., 2010) and the PD brain (Rogers et al., 2007; Werner et al., 2008). Thus, it is possible that an imbalance between the protecting vs. damaging actions of astrocytes on neurons during aging could also explain the marked action of aging on PD (Damier et al., 1993; Lin et al., 1993; Venkateshappa et al., 2012). The astrocyte population is normally replenished by new astrocytes derived from stem cells of the subventricular zone (Gonzalez-Perez & Quinones-Hinojosa, 2012; Mack & Wolburg, 2013). The reduction in gliogenesis induced by the senescence of the subventricular zone during the last third of life (Hoglinger et al., 2004; Galvan & Jin, 2007; Conover & Shook, 2011; Shook et al., 2012) is another circumstance to explain the aging of astrocytes and, consequently, the aging and death of DA neurons.

Microglia is normally found in a quiescent resting state with a small soma and highly ramified processes that contact neuronal synapses (Davalos et al., 2005; Nimmerjahn et al., 2005; Wake et al., 2009). In response to brain injury, the microglial cell shortens its branches, enlarges its somata, and expresses macrophage markers (Streit et al., 1989; Ito et al., 1998), thereby promoting the release of cytokines, chemokines, and ROS (Kreutzberg, 1996), and activating its migration (Kreutzberg, 1996) and phagocytic action (Streit, 2002; Doorn et al., 2012). This microglial reaction has been observed in PD (Hunot et al., 1996; Knott et al., 2000; Croisier et al., 2005; Orr et al., 2005), where it can be activated in response to aggregated (Zhang et al., 2005) and nitrated (Mor et al., 2003) forms of α-synuclein, thereby promoting the internalization and degradation of this protein (Zhang et al., 2005). Although the microglial reaction could be initially useful (e.g. preventing the accumulation of the α-synuclein in the Lewy bodies of DAn), its chronic activity can promote the DAn degeneration in PD (Halliday & Stevens, 2011). Similar chronic activation of microglia has been observed in the aging brain (Godbout & Johnson, 2004; Flanary, 2005; Gelinas & McLaurin, 2005; Streit et al., 2008; Campuzano et al., 2009) where these cells release high amounts of IL-6 and TNFα (Njie et al., 2012). In addition, it has been reported that senescent microglia does not perform its actions properly (e.g. it presents a shortening of the telomere), a fact that has also been suggested for the PD brain (Barcia et al., 2004; Ouchi et al., 2005; Mount et al., 2007; Marinova-Mutafchieva et al., 2009; Cunningham, 2013). Thus, the behavior of microglia also seems to be similar in the PD and aged brain.

Therefore, the action of aging on astrocytes and microglia seems to be important for the DAn degeneration observed in aging and PD. A similar conclusion is suggested by studies with pluripotent stem cells (Takahashi & Yamanaka, 2006) which in vitro differentiated to DAn. These neurons only present the typical characteristics of the degenerating parkinsonian DAn (reduced numbers of neurites, accumulation of a-synuclein, etc.) when they are aged in vitro (Sanchez-Danes et al., 2012; Isobe et al., 2014).

The cause of PD and aging: the multifactor hypothesis

Although definitive conclusions about the etiology of PD have not been reached, it is generally considered that this illness is the consequence of the simultaneous action of a number of toxic and genetic agents able to degenerate the DAn in animals and humans (multifactor hypothesis of PD) (Olanow & Tatton, 1999; Bossy-Wetzel et al., 2004; Litvan et al., 2007a,b; Obeso et al., 2010). The combination of these damaging agents might not be exactly the same in all patients, which may explain the high clinical diversity observed in PD. A similar multifactor etiopathogenic hypothesis has been proposed for the brain aging of healthy subjects (Olson, 1987; Peto & Doll, 1997). As will be shown, most (if not all) agents included in the multifactor hypothesis of PD have also been included in the multifactor hypothesis of aging, thereby linking their etiopathologies (Table1) (see at the end of the section ?The cause of PD and aging: the multifactor hypothesis).

Table 1.

Cell characteristics and mechanisms that are common to aging and Parkinson's disease (PD)

Cellular changes Etiology
PD Age PD Age
SNn loss Melanin+ cells Pathogeny Multifactorial YES YES
TH+ cells Oxidative stress ETC disruption YES YES
DD+ cells ROS/RNS
DAT+ cells SOD activity
Lat/Postdistribution YES YES GPx activity
nsDAn adaptation DA turnover Lipid peroxidation
DA receptors Protein damage
DAT activity Mitochondrial dysfunction mtDNA mutations
DAn differentiation mtDNA delections
PPN Ach cells Mitophagy
Locus coeruleus NA cells Transport
Thalamus GLU cells Genes/Proteins Polygenic low penetrance YES YES
Astrocytes Astrogliosis YES ? α-synuclein aggregation YES YES
Glutation release ? Parkin activity
Trophic factor release UCH-L1 activity
Cytokines, TNFα release PINK1 activity
GLU release ? DJ-1 activity
Gliogenesis Silent toxics MPTP/paraquat … ?
Microglia μgliosis YES YES Premotor disturbances Olfactory dysfunctions YES YES
IL-6/TNFα release Sleep fragmentation YES YES
Stem cells SVZ proliferation Constipation YES YES
Mood disorders YES YES

SNn, substantia nigra neurons; nsDAn, nigrostriatal dopamine neurons; TH+, cells with tyrosine hydroxylase immunoreactivity; DD+, cells with l-dopa decarboxylase immunoreactivity; DAT+, cells with immunoreactivity for the dopamine transporter; DA, dopamine; Ach, acetylcholine; NA, norepinephrine; GLU, glutamate; SVZ, subventricular zone; ETC, electron transport chain; ROS, reactive oxygen species; RNS, reactive nitrogen species; SOD, superoxide dismutase; GPX, glutathione peroxidase; mtDNA, mitochondrial DNA. Not all data summarized here have the same experimental or clinical confidence level. The question mark is included when available data are scarce, incomplete, or contradictory.

Oxidative stress in PD and aging

The oxidative stress theory of aging proposed by Denham Harman in the 1950s states that the age-related loss of physiological functions is due to the progressive accumulation of oxidative damage (Harman, 1956). Nowadays, practically all theories implicate oxidative stress in cell aging (Gerschman et al., 1954; Brack et al., 2000; Toussaint et al., 2000; Jang & Van Remmen, 2009). The mitochondrial production of energy generates unpaired electrons (mainly in the complexes I and III) which facilitate the production of reactive oxygen (ROS) and nitrogen (RNS) species, damaging essential constituents of the cell (proteins, lipids, nucleic acids, etc.) (Sohal & Weindruch, 1996; Cakatay et al., 2003; Kayali et al., 2009; Murphy, 2009; Perez et al., 2009; Oliveira et al., 2010) and accelerating aging (Sohal & Brunk, 1992; Barja, 2002a). DAn could be particularly sensitive to oxidative stress and aging. The nsDAn has a very high number of synaptic terminals (up to 1 million per cell in humans) (Matsuda et al., 2009) and a thin unmyelinated axon (Orimo et al., 2011) which consume a high quantity of energy and which need local mitochondria to support their activity. If there were 10 mitochondria per synaptic terminals, then the total number of mitochondria in each DAn could be higher than 10 million, even when the axonal mitochondria are not included in the calculation. Bearing in mind that 0.2–2% of total oxygen consumption is converted into free radicals in the mitochondria (rather than into water) (Richter, 1992), the extremely high number of DAn mitochondria must generate a vast quantity of ROS whose toxic action during aging may be difficult to prevent. In addition, the DAn also produces ROS/RNS by other mechanisms, including DA metabolization by monoamine oxidase, DA autooxidation, and the Fenton reaction (these cells have a high concentration of iron) (Halliwell, 1992; Kidd, 2000; Ahlskog, 2005; Berg & Hochstrasser, 2006). Therefore, oxidative stress that promotes aging in all cells could be particularly dangerous in the DAn (Parker et al., 1989; Bender et al., 2006). The DAn is protected from free radicals by both nonselective mechanisms normally at work in all cells [superoxide dismutase (SOD) and glutathione peroxidase (GPX)] and selective mechanisms that are only operative in this cell. Examples of selective protecting mechanisms are the dopamine transporter (DAT) that moves DA from the extracellular to the intracellular medium, and the vesicular monoamine transporter 2 (VMAT2) that moves DA from the intracellular medium to synaptic vesicles. These agents protect DAn from the self-oxidation of DA, keeping the neurotransmitter away from the cell regions more vulnerable to oxidative stress and in an environment where the low pH decreases the oxidation rate.

Oxidative stress has been included in most models to explain the DAn degeneration in PD (Olanow & Tatton, 1999; Dawson & Dawson, 2003; Moore et al., 2005; Hwang, 2013). There is evidence showing a disruption of the mitochondrial electron transport chain (particularly of the complex I) which increases ROS generation in the PD brain (Parker et al., 1989; Shapira et al., 2002; Bender et al., 2006). This deficiency was also observed in platelets (Parker et al., 1989) and other tissues (Orth & Schapira, 2002) of patients with PD and was confirmed with cybrid models made with platelets of patients with PD (Swerdlow et al., 1996; Gu et al., 1998). The toxic effect of oxidative stress in the DAn has been tested in animals by administering drugs which, after blocking the mitochondrial complex I, induce a parkinsonian syndrome. These drugs include MPTP (Burns et al., 1983; Langston & Ballard, 1984; Ballard et al., 1985), rotenone (Ramsay et al., 1991; Betarbet et al., 2000), paraquat (Miller et al., 1978; Manning-Bog et al., 2002), and 6-hydroxydopamine (Ungerstedt, 1971; Rodriguez et al., 2001), which are drugs whose toxic action on the DAn have been contrasted in humans who received them unintentionally and who developed PD (Tanner, 1989; Semchuk et al., 1992; Gorell et al., 1998; Di Monte et al., 2002; Weisskopf et al., 2010). In addition, the mechanisms for nonselective (SOD and GPX; Riederer et al., 1989; Liu et al., 1994; Asanuma et al., 1998; Gonzalez-Zulueta et al., 1998) and selective (DAT and VMAT2) (Cruz-Muros et al., 2007a,b2008) DAn protection are downregulated in PD. The imbalance between the production of free radicals and the prevention of their toxic activities is probably at the basis of the high oxidative damage of lipids (Bosco et al., 2006), proteins, and DNA (Nakabeppu et al., 2007) found in the SN of the PD brain (Jenner, 2003, 2007). The same imbalance has been observed in the healthy aging brain (Sohal & Brunk, 1992; Sohal & Weindruch, 1996; Barja, 2002b,a; Cakatay et al., 2003; Kayali et al., 2009; Perez et al., 2009; Oliveira et al., 2010). In keeping with this, procedures that retard aging in animals (particularly caloric restriction) normally increase resistance to oxidative stress (Sohal & Weindruch, 1996; Yu, 1996; Yu & Yang, 1996; Barja, 2002b,a; Bokov et al., 2004). Thus, available evidence suggests a direct link between the age-related oxidative stress and the DAn degeneration in PD. Although oxidative stress is normally included in the etiopathology of PD (Subramaniam & Chesselet, 2013), there is no agreement about its origin. Oxidative stress could be induced by the action of other cells on the DAn (e.g. by excitotoxicity) (Nguyen et al., 2011) or may simply be the consequence of aging.

Mitochondrial damage in PD and aging

Shortly after the discovery of the mitochondrial genome (mtDNA) and after the incorporation the mitochondrial damage to the oxidative stress hypothesis (Harman, 1972), the stress-related accumulation of mtDNA damage began to be considered as a major cause of aging (Miquel et al., 1980). Complex I is in close proximity to the mtDNA, and the inverse relationship between lifespan and ROS production (at complex I (Barja & Herrero, 2000; Lambert et al., 2007) has also been observed between lifespan and the number of mtDNA mutations (Vermulst et al., 2007). Human mtDNA is highly vulnerable to postnatal mutations not only because of its proximity to the electron transport chain (the source of 90% of ROS), but also because of its lack of protecting histones, and its high replication rate. If ROS-induced mtDNA mutations are not repaired quickly, then they will be propagated and fixed with the mitochondrial replication cycle where the G is replaced by T and C by A (Wang et al., 1998a). Thus, the mitochondrial replication produces a clonal expansion and a propagation of the mtDNA errors, amplifying tissue-specific mutations and inducing somatic mosaicism which increase with age (genetic drift) (Muller-Hocker, 1989, 1990; Fayet et al., 2002). The accumulation of mutations during life is much higher in the mtDNA (Chinnery et al., 1999) than in the nuclear DNA (Cantuti-Castelvetri et al., 2005; Reddy & Beal, 2005). As suggested by the 2'deoxyguanosine data, the mutating action of free radicals on aging is mainly induced in the mitochondrial genome, with the accumulation rate of the nuclear DNA mutations not being correlated with the maximum lifespan (Barja & Herrero, 2000). Sporadic random mutations of the mtDNA may not be enough to induce functional disturbances in young people. However, their accumulation throughout life deteriorates the normal physiology of cells (Cantuti-Castelvetri et al., 2005; Smigrodzki & Khan, 2005; Maruszak et al., 2006) and promotes aging (Harman, 1972; Linnane et al., 1989). Brain tissue is particularly susceptible to mutations (Vermulst et al., 2007), mostly when compared with other tissues which, as occurs with the liver, do not accumulate mtDNA mutations during most of a person's life (Ameur et al., 2011). The accumulation of the mtDNA deterioration with aging could be particularly high in the SNn (Reeve et al., 2013), which normally presents a high number of delections (>40% in healthy sixty-year-old subjects) (Bender et al., 2006). The influence of mtDNA on aging could help to explain why ultra-centenaries have a high content of mtDNA (He et al., 2014) and why the mtDNA background of some ethnic groups affects their lifespan (Raule et al., 2013).

The decrease in energy production is one of the consequences of mitochondria damage. The preservation of mitochondrial activity needs a number of mechanisms that consume a portion of the energy produced by the organelle. These energy-demanding mechanisms include those involved in the movement of mitochondria to the cell locus with the highest energy requirement (axons and synapses), in the repair of damaged mitochondria (including mtDNA), in the destruction of badly damaged mitochondria, and in the synthesis of new mitochondria. The healthy mitochondria produce much more energy than that required to maintain normal activity, a fact that changes with aging. The decrease in the energy resources in the aged cells may prevent the repair of the mitochondrial damage, thus precipitating the organelle in a vicious cycle (↓ energy production ↔ ↓ mitochondrial repair) where the mitochondria behaves as both cause and consequence of aging (Lauri et al., 2014). Mitochondrial damage similar to that found in the aging brain has been found in the PD brain where the accumulation of mtDNA mutations is usually higher in patients over 65 years of age (Kraytsberg et al., 2006). mtDNA delections in PD are a little higher than those observed in healthy aged subjects (52% vs. 44%) (Bender et al., 2006), data that also suggest that the difference between aging and PD is a matter of quantity more than a matter of quality.

Most data supporting the free radical theory of aging are correlative and do not directly prove this theory. On the other hand, there are data suggesting that the effect of oxidative stress on aging could be less relevant than frequently assumed. One way to directly test the free radical theory of aging is to manipulate the oxidative damage of mitochondria by modifying the expression of antioxidant proteins (Jang & Van Remmen, 2009). Studies with MnSOD, catalase, and thioredoxin knockout mice have provided inconclusive data to support the oxidative stress theory of aging (Muller et al., 2007; Jang & Van Remmen, 2009; Sohal & Orr, 2012). However, these knockout mice models of aging and other aging models such as the SAMP8 (Takeda, 2009; Shimada & Hasegawa-Ishii, 2011) or the mtDNA mutator mouse (Edgar & Trifunovic, 2009; Lauri et al., 2014b) could be particularly useful to study the influence of aging on the DAn degeneration in PD (Liu et al., 2008; Dai et al., 2013). In addition, different approaches have reported non-oxidative mitochondrial dysfunctions. A number of age-associated structural changes (e.g. enlargement of mitochondria, alterations of the cristae structure, matrix vacuolization/densification) have been reported (Wilson & Franks, 1975; Herbener, 1976; Tate & Herbener, 1976). Dysfunctional mitochondria may be repaired by a fission/fusion process. However, the mitochondria must be eliminated by mitophagy when the damage is important, a selective type of autophagy that maintains a suitable number of functional mitochondria and prevents the accumulation of those that are nonfunctional. Excessive mitochondrial stress (Ethell & Fei, 2009) or modifications of proteins involved in the mitophagy modulation (e.g. parkin and PINK1) (Narendra et al., 2010; Van Humbeeck et al., 2011; Palikaras & Tavernarakis, 2012) disturb mitophagy and promote PD. The low clearance of dysfunctional mitochondria involved in the progression of PD has also been linked to aging (Palikaras & Tavernarakis, 2012), which presents low autophagic activity (Cuervo et al., 2004; Hubbard et al., 2012) whose recovery (e.g. using caloric restriction) promotes longevity (Yen & Klionsky, 2008). Other autophagic processes whose modification have been linked to aging are probably also involved in PD (Cuervo et al., 2004; Martinez-Vicente et al., 2008; Wong & Cuervo, 2010; Hubbard et al., 2012). The cytosolic components of the mammalian cell may be degradated by three complementary processes: macroautophagy, microautophagy, and chaperone-mediated autophagy. These processes sequester proteins and organelles from the cytoplasm and deliver them into the lysosomal compartment where they are degraded and eliminated (Mizushima et al., 2008; He & Klionsky, 2009). The downregulation of these autophagic mechanisms has been involved in age-related neurodegeneration (Shibata et al., 2006; Palikaras & Tavernarakis, 2012). There is also increasing evidence showing insufficient autophagy in neurodegenerative disorders where this could explain the accumulation of proteins in cytosolic aggregates (e.g. of α-synuclein in Lewy bodies of PD) (Stefanis et al., 2001; Webb et al., 2003; Cuervo et al., 2004; Martinez-Vicente et al., 2008; Wong & Cuervo, 2010; Friedman et al., 2012). The identification of the autophagic disturbances in PD could provide new evidence to understand the age influence on PD, and perhaps for controlling both processes (Table1).

An efficient mitochondrial quality control needs mechanisms to move this organelle between different cell regions. The axon of the snDAn accounts for a high percentage of the cell volume (>95%) (Devor, 1999; De Vos et al., 2008) and uses a significant portion of its energy (Brookes et al., 2004). Thus, it contains a high number of mitochondria, a portion of which could be generated (Amiri & Hollenbeck, 2008) and restored (fusion/fission) (Court & Coleman, 2012) locally. However, only 13 of ≈1000 mitochondrial proteins are encoded by the mtDNA (Boore, 1999), which means that most synaptic and axonal mitochondria are probably synthesized in the neuronal somata and moved along the axon (>30% of axonal mitochondria are normally in motion) until reaching these distal structures (anterograde motion). In addition, axonal transport also moves dysfunctional mitochondria from synaptic bottoms and axons to the cell somata (retrograde motion) where they can be destroyed by mitophagy, lysosomes, and the ubiquitin-proteasome system (Cheng et al., 2010). Thus, the snDAn survival needs efficient axonal transportation (Sasaki et al., 2005; De Vos et al., 2008; Florenzano, 2012) which may be hampered by the small diameter (<1 μm) and the intensive branching (hundred thousands of bifurcations) of this cell axon (Matsuda et al., 2009). This transportation is probably damaged in PD. There is evidence suggesting that PD starts with axonal damage and progresses by a ‘dying back’ process to the DAn somata (Cheng et al., 2010). Proteins that collaborate with the kinesins/dyneins system to transport mitochondria across axons (e.g. α-synuclein, parkin and PINK1-Miro-Milton complex) have also been implicated in PD (Bueler, 2009; Weihofen et al., 2009; Yang et al., 2010). Axonal disruptions have also been observed in aged neurons (Fjell & Walhovd, 2010), which show a deterioration of axonal transport (Gilley et al., 2012) and of the quality control (Sterky et al., 2011) of the mitochondria. Thus, PD and aging also present similar anomalies in the axonal transport and quality control of mitochondria.

Other biochemical pathways that could be useful to compare the mitochondrial deterioration in aging and PD are beginning to be studied. Pathways involved in the modulation of microRNAs (miRNAs) are an example of these new possibilities. miRNAs are small noncoding RNA species that play crucial regulatory roles in many biological processes including those involved in the mitochondrial-mediated aging (Lauri et al., 2014). miRNAs can control senescence at multiple levels including the modulation of mitochondrial respiration, the modulation of genes involved in ATP and ROS production, and the regulation of autophagy (Zhao et al., 2010; Bai et al., 2011; Bandiera et al., 2011; Faraonio et al., 2012; Olivieri et al., 2012; Magenta et al., 2013). The modulating action of aging on miRNAs is probably different in each organ (e.g. in the liver and the brain), which could be helped to explain the different aging rate of tissues (Li et al., 2011). miRNAs are probably important not only for the ontogenic differentiation of the DAn (Junn & Mouradian, 2012), but also for its deterioration with aging and PD (Kim et al., 2007; Harraz et al., 2011; Mouradian, 2012). Perhaps after certain methodological improvements (e.g. after preventing the low stability of miRNAs in the brain samples), the comparison of the aging and PD miRNA could be particularly useful to identify similarities and differences between the DAn in both conditions (Sethi & Lukiw, 2009).

In summary, mitochondrial damage is a central fact in the aged and PD brain. Both aging and PD present a slow-progression mitochondrial disturbance linked to a slow-course neurodegeneration lasting for many years. The mitochondrial deterioration rate is not the same in all tissues (which could explain the different aging rates observed in the different organs of the body), with the DAn being particularly vulnerable to the aged mitochondria (Conley et al., 2007; Lauri et al., 2014). It is possible that some mitochondrial damages can be transmitted to the offspring, which could explain why the risk of developing PD may be greater in persons whose mother was affected by the disease than in those with affected fathers (Beal, 1998; Bonilla et al., 1999; Chinnery et al., 1999).

Genetic control of PD and aging

There are data suggesting that aging is genetically programmed in animals and humans (Austad, 2004; Longo et al., 2005; Prinzinger, 2005). Humans present a significant degree of heritability of longevity, and a mortality rate doubling time (time to double the probability of dying) which is constant among human populations (≈8 years), even under different environmental conditions (Hjelmborg et al., 2006). However, the high number of genes involved (see GenAge database) and the partial relevance of most of them mean that genetic information cannot be used at present to predict the aging rate of individuals. This circumstance is also true for PD, where the polygenic low-penetrance and the gene–environment interaction has led to much debate about the actual significance of genetic factors on sporadic PD (Sellbach et al., 2006; Wirdefeldt et al., 2011). The offspring of long-lived parents seem to be protected against age-related diseases (Atzmon et al., 2004), which suggests that the genetic control of aging is involved in neurodegenerative illnesses. At present, there is not enough information to compare the polygenic control of aging and PD, but there is clear evidence showing that genes that modulate the DAn vulnerability (whose mutation induces familiar parkinsonisms) are linked to normal aging. Some of these genes will be briefly referred to below.

In general, genes that modulate the oxidative stress (Muftuoglu et al., 2004; Palacino et al., 2004; Devi et al., 2008; Irrcher et al., 2010) and the quality control of mitochondria (Bueler, 2009; Weihofen et al., 2009; Yang et al., 2010; Narendra et al., 2010; Van Humbeeck et al., 2011; Palikaras & Tavernarakis, 2012) have proved to be relevant for both PD and aging. α-synuclein (a protein involved in the recycling vesicles in DAergic synapses) (Abeliovich et al., 2000) may present anomalous conformations that facilitate the production of oligomeric species and amyloidogenic filaments whose aggregation and precipitation form the Lewy bodies found in nsDAn of the PD brain (Lansbury & Brice, 2002). There are data showing that oxidative stress can promote the aggregation of α-synuclein in PD and other synucleinopathies (Giasson et al., 2000). α-synuclein presents a similar behavior in aging, promoting the accumulation of pathogenic proteins, the impairment of the ubiquitin-proteasome system, and the loss of DAn (Li et al., 2004; Moore et al., 2005). In the PD brain, the anomalous activity of parkin (a protein involved in the ubiquitination of proteins and in mitophagy) produces an improper targeting of substrates for proteosomal degradation and in a fragmentation of the mitochondrial network (Lucking et al., 1998, 2000; Moore et al., 2005; Reeve et al., 2014). Similar facts have been reported for parkin during aging (Rodriguez-Navarro et al., 2007; Vincow et al., 2013). Changes in the UCH-L1 (a protein that recycles free ubiquitin) activity may result in an impairment of the efficiency of the ubiquitin-proteasome system (Osaka et al., 2003; Li et al., 2004) which is involved in PD (Leroy et al., 1998). This protein has been proposed as an intracellular stress marker in cell aging (Marzban et al., 2002). PINK1 phosphorylates mitochondrial proteins in response to cellular stress, thereby preventing mitochondrial dysfunctions and promoting (in cooperation with parkin) the degradation of damaged mitochondria by lysosomes and proteasomes (Valente et al., 2004a; Liu, 2014). The PINK1 activity is also involved in both PD (Valente et al., 2004b; Albanese et al., 2005; Gelmetti et al., 2008) and aging (Wood-Kaczmar et al., 2008; Vincow et al., 2013). DJ-1 is a ubiquitous protein located in neurons and glia, where it provides protection against oxidative stressors. The insoluble forms of DJ-1 are notably greater in the brains of patients with PD (Moore et al., 2005), and its mutation causes a familiar early onset of parkinsonism (Bonifati et al., 2003a,b; Ibanez et al., 2003). This protein has also been linked to aging (Marzban et al., 2002; Meulener et al., 2006).

Although the influence of the above-mentioned genes in different familiar parkinsonisms is clear, its actual relevance in sporadic PD is less evident. In addition to the above-mentioned genes, many other genes can influence lifespan. The possible influence of a gene on lifespan can be found in GenAge, a database with information on over 700 genes (Tacutu et al., 2012; Budovsky et al., 2013). The possible relevance of most of these age-related genes on PD cannot be directly checked because there is not a gene bank for PD similar to GenAge (Wirdefeldt et al., 2011). Thus, it is not possible to compare the configuration of genes involved in PD and aging at present. Another limiting fact to consider is the complex genome–environment interaction that modulates the aging process and that probably influences the risk of PD. The regulation of single genes can extend the lifespan of some primitive organisms more than 10-fold (Ayyadevara et al., 2008). Although the genetic modulation of lifespan is more complex and less efficient in mammals, the advance in knowledge about the interaction of the age-related genes and the environment is starting to be used to extend the lifespan of these animals (de Magalhaes et al., 2012). Thus, the aging of certain mammals may be modulated by manipulating external (e.g. temperature, diet) and internal (e.g. by targeting the insulin-like group factor receptors, growth hormone receptors, sirtuins) variables (de Magalhaes et al., 2012; de Cabo et al., 2014). If, as the present review suggests, the age-related mechanisms are directly involved in PD, then the control of some of the environmental variables that have proved useful to modulate aging in animals (e.g. caloric restriction, hormesis, spermidine) could also be useful to control the onset and progression of PD. Some of these variables have already proved their efficacy in animal models of PD. This is the case of the caloric restriction whose utility to control aging has been proved in practically all animal species studied and which may decrease the vulnerability of the DAn to toxic agents (Duan & Mattson, 1999). There is some epidemiological (de Lau et al., 2005) and clinical (Vanitallie et al., 2005; Nunomura et al., 2007) studies suggesting that the caloric restriction and the control of diets (antiglycating agents..) could decrease the clinical expression and the evolution of PD (Wirdefeldt et al., 2011; Hipkiss, 2014). Sirtuin 1, a protein that mediates longevity under calorie restriction (Jadiya et al., 2011; Zhang et al., 2011), decreases in DAn which received dopaminergic neurotoxics such as rotenone, 6-hydroxydopamine, or MPTP (Alvira et al., 2007; Pallas et al., 2008; Albani et al., 2009; Jadiya et al., 2011; Srivastava & Haigis, 2011). The overexpression of sirtuin 1 (Wareski et al., 2009) or its activation by resveratrol (Okawara et al., 2007; Chao et al., 2008; Jin et al., 2008) decreases the action of these toxics on the DAn. This protective effect has not been shown for other sirtuins (Dillin & Kelly, 2007) which, as occurs with the sirtuin 2, may even promote the cell death in animal models of PD (Outeiro et al., 2007). Other agents that could be useful for modulating both aging and PD are the insulin growth factors (Mattson et al., 2004; de Cabo et al., 2014; Numao et al., 2014), spermidine (Pucciarelli et al., 2012; De La Hera et al., 2013), metformin (Patil et al., 2014), and rapamycin (Malagelada et al., 2010; Liu et al., 2013).

Aging, silent toxics, and PD

The incidence of PD increases sharply toward the end of the fifth decade of life just as the effect of aging all over the body appears. The DAn degeneration considered as the hallmark of PD has also been observed in the aged brain where it is induced by most (if not all) agents involved in PD. The main difference between DAn degeneration in PD and aging seems to be a question of quantity (degree of cell loss) more than a question of quality (presence/absence of cell loss; McGeer et al., 1977; Kordower et al., 2013). Senescence is a wider phenomenon affecting practically all cells in the body, whereas PD has been restricted to some brain centers and cell populations. The present review suggests that PD may be the local expression of aging in some cell populations whose characteristics (high number of synaptic terminals and mitochondria, unmyelinated axon) make them highly vulnerable to aging. If PD is the result of aging, a key question to consider is why only 4-5% of people develop the illness. In addition to the genetic characteristics of each individual, the environmental circumstances affecting each person throughout their life are different. Many circumstances capable of increasing DAn vulnerability present a toxic action which is not traumatic enough to induce clinical signs of PD in the short term (‘silent toxics’). Subjects who are highly exposed to silent toxics could present PD if their lifespan is long enough, whereas other people who are less exposed to silent toxics or with a short lifespan will never present PD. In these subjects, the compensatory mechanisms of the surviving DA neurons are sufficient to maintain the basal ganglia activity, and the age-related DAn loss induced by aging does not reach the threshold that triggers the motor disturbances. Thus, in these subjects (≈94% of people under 70), the motor disturbances are not evident and the DAn degeneration goes unnoticed.

There are many silent toxic candidates. This is the case of pesticides and other chemical agents whose frequent presence in the environment may explain why farming, well water use, and rural living (normally accompanied by occupational exposure to herbicides, insecticides, and other chemicals) increase the risk of PD (Seidler et al., 1996; Gorell et al., 1998; Di Monte et al., 2002; Coon et al., 2006; Hancock et al., 2008; Weisskopf et al., 2010). Other possible damaging agents could be the high consumption of dietary products or low physical activity (Wirdefeldt et al., 2011). Some silent toxics could even perform their damaging action in prenatal life. The exposure of pregnant animals to neuroactive agents can produce permanent effects in the monoaminergic neurons of the offspring (Alonso et al., 1991a,b; Arevalo et al., 1991). The pre- or neo-natal exposure of rats to gram(−) bacteriotoxin lipopolysaccharide (LPS) induces a permanent decrease in the number of DA neurons (Ling et al., 2002; Carvey et al., 2003; Fan et al., 2011a,b; Cai et al., 2012) and an increase in the α-synuclein aggregation in the surviving DAn (Bandiera et al., 2011). The identification of silent toxics is not easy because subjects are normally exposed to a myriad of chemical mixtures of environmental pollutants during their life and because the effect of these toxics may be modulated by the genetic ‘fingerprint’ of each subject (Paolini et al., 2004). Some of these silent toxics probably also increase the aging rate in subjects without PD. There is an increasing number of studies showing that some external agents that accelerate aging are similar to those that increase the risk of PD (aging epigenome) (Sinclair & Oberdoerffer, 2009). Thus, what the silent toxic may be doing is accelerating the effect of aging on the DAn, with PD always being a matter of time. This possibility could explain why PD went practically unnoticed until life expectancy increased the way it did over the last two centuries. In the same way, if life expectancy continues to increase in the future, and the mechanisms involved in aging are not controlled, an increase in the percentage of the population suffering PD is to be expected.

PD and aging: a final overview

In summary, the present review suggests that PD is the result of the slow neurodegenerative action of aging, an effect that can be accelerated by repeated damage to DAn accumulated over a person's lifespan. When the DAn degeneration reaches a critical level and the compensatory mechanisms are insufficient to maintain the basic functions of dopamine, the first motor disturbances appear and the diagnosis of PD can be made. Thus, the etiologic agents involved in PD could be the same as those involved in aging. The action of these agents could be particularly important in DAn because of their high vulnerability to age-related agents and because these cells are highly susceptible to a number of silent toxics (Going et al., 2002; Takubo et al., 2002; Jeyapalan & Sedivy, 2008; de Cabo et al., 2014). This could explain why 50 years after first finding of DAn degeneration in sporadic PD, no specific causes for this illness have yet been found. In our opinion, more direct attention to the aging processes could accelerate the acquisition of new knowledge on the biological basis of PD, and actions aimed at delaying aging or promoting rejuvenation could also be useful to control the onset and progression of PD (Medvedev, 1981; Holliday, 1984). On the other hand, the considerable effort that is being made all over the world to understand the mechanisms involved in neurodegenerative illness should also contribute to clarifying the biological basis of aging.

Funding

No funding information provided.

Conflict of interest

None declared.

References

  1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–252. doi: 10.1016/s0896-6273(00)80886-7. [DOI] [PubMed] [Google Scholar]
  2. Ahlskog JE. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson's disease. Mov. Disord. 2005;20:271–282. doi: 10.1002/mds.20362. [DOI] [PubMed] [Google Scholar]
  3. Albanese A, Valente EM, Romito LM, Bellacchio E, Elia AE, Dallapiccola B. The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology. 2005;64:1958–1960. doi: 10.1212/01.WNL.0000163999.72864.FD. [DOI] [PubMed] [Google Scholar]
  4. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 2009;110:1445–1456. doi: 10.1111/j.1471-4159.2009.06228.x. [DOI] [PubMed] [Google Scholar]
  5. Allen NJ, Barres BA. Neuroscience: Glia – more than just brain glue. Nature. 2009;457:675–677. doi: 10.1038/457675a. [DOI] [PubMed] [Google Scholar]
  6. Alonso J, Castellano MA, Rodriguez M. Behavioral lateralization in rats: prenatal stress effects on sex differences. Brain Res. 1991a;539:45–50. doi: 10.1016/0006-8993(91)90684-n. [DOI] [PubMed] [Google Scholar]
  7. Alonso SJ, Castellano MA, Afonso D, Rodriguez M. Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol. Behav. 1991b;49:69–72. doi: 10.1016/0031-9384(91)90232-d. [DOI] [PubMed] [Google Scholar]
  8. Alvira D, Yeste-Velasco M, Folch J, Verdaguer E, Canudas AM, Pallas M, Camins A. Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience. 2007;147:746–756. doi: 10.1016/j.neuroscience.2007.04.029. [DOI] [PubMed] [Google Scholar]
  9. Ameur A, Stewart JB, Freyer C, Hagstrom E, Ingman M, Larsson NG, Gyllensten U. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet. 2011;7:e1002028. doi: 10.1371/journal.pgen.1002028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Amiri M, Hollenbeck PJ. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev. Neurobiol. 2008;68:1348–1361. doi: 10.1002/dneu.20668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Arango V, Underwood MD, Pauler DK, Kass RE, Mann JJ. Differential age-related loss of pigmented locus coeruleus neurons in suicides, alcoholics, and alcoholic suicides. Alcohol. Clin. Exp. Res. 1996;20:1141–1147. doi: 10.1111/j.1530-0277.1996.tb01102.x. [DOI] [PubMed] [Google Scholar]
  12. Arevalo R, Afonso D, Castro R, Rodriguez M. Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 1991;49:53–66. doi: 10.1016/0024-3205(91)90579-z. [DOI] [PubMed] [Google Scholar]
  13. Asanuma M, Hirata H, Cadet JL. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice. Neuroscience. 1998;85:907–917. doi: 10.1016/s0306-4522(97)00665-9. [DOI] [PubMed] [Google Scholar]
  14. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J. Am. Geriatr. Soc. 2004;52:274–277. doi: 10.1111/j.1532-5415.2004.52068.x. [DOI] [PubMed] [Google Scholar]
  15. Austad SN. Is aging programed? Aging Cell. 2004;3:249–251. doi: 10.1111/j.1474-9728.2004.00112.x. [DOI] [PubMed] [Google Scholar]
  16. Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7:13–22. doi: 10.1111/j.1474-9726.2007.00348.x. [DOI] [PubMed] [Google Scholar]
  17. Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J. Am. Soc. Nephrol. 2011;22:1252–1261. doi: 10.1681/ASN.2010040367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Baker KG, Tork I, Hornung JP, Halasz P. The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp. Brain Res. 1989;77:257–270. doi: 10.1007/BF00274983. [DOI] [PubMed] [Google Scholar]
  19. Ballard PA, Tetrud JW, Langston JW. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology. 1985;35:949–956. doi: 10.1212/wnl.35.7.949. [DOI] [PubMed] [Google Scholar]
  20. Bandiera S, Ruberg S, Girard M, Cagnard N, Hanein S, Chretien D, Munnich A, Lyonnet S, Henrion-Caude A. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS ONE. 2011;6:e20746. doi: 10.1371/journal.pone.0020746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, Bautista V, Poza YPM, Fernandez-Barreiro A, Hirsch EC, Herrero MT. Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia. 2004;46:402–409. doi: 10.1002/glia.20015. [DOI] [PubMed] [Google Scholar]
  22. Barja G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 2002a;1:397–411. doi: 10.1016/s1568-1637(02)00008-9. [DOI] [PubMed] [Google Scholar]
  23. Barja G. Rate of generation of oxidative stress-related damage and animal longevity. Free Radic. Biol. Med. 2002b;33:1167–1172. doi: 10.1016/s0891-5849(02)00910-3. [DOI] [PubMed] [Google Scholar]
  24. Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. Faseb J. 2000;14:312–318. doi: 10.1096/fasebj.14.2.312. [DOI] [PubMed] [Google Scholar]
  25. Barrio JR, Huang SC, Melega WP, Yu DC, Hoffman JM, Schneider JS, Satyamurthy N, Mazziotta JC, Phelps ME. 6-[18F]fluoro-L-dopa probes dopamine turnover rates in central dopaminergic structures. J. Neurosci. Res. 1990;27:487–493. doi: 10.1002/jnr.490270408. [DOI] [PubMed] [Google Scholar]
  26. Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta. 1998;1366:211–223. doi: 10.1016/s0005-2728(98)00114-5. [DOI] [PubMed] [Google Scholar]
  27. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–738. doi: 10.1016/j.cmet.2011.08.016. [DOI] [PubMed] [Google Scholar]
  28. Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Bog AB, Berry MJ, White LR, Ross GW. Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson's brain. Mol. Neurodegener. 2011;6:8. doi: 10.1186/1750-1326-6-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Benarroch EE. Astrocyte-neuron interactions: implications for epilepsy. Neurology. 2009;73:1323–1327. doi: 10.1212/WNL.0b013e3181bd432d. [DOI] [PubMed] [Google Scholar]
  30. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 2006;38:515–517. doi: 10.1038/ng1769. [DOI] [PubMed] [Google Scholar]
  31. Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov. Disord. 2006;21:1299–1310. doi: 10.1002/mds.21020. [DOI] [PubMed] [Google Scholar]
  32. Bertrand E, Lechowicz W, Szpak GM, Dymecki J. Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson's disease. Folia Neuropathol. 1997;35:80–86. [PubMed] [Google Scholar]
  33. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 2000;3:1301–1306. doi: 10.1038/81834. [DOI] [PubMed] [Google Scholar]
  34. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 2004;125:811–826. doi: 10.1016/j.mad.2004.07.009. [DOI] [PubMed] [Google Scholar]
  35. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P. DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol. Sci. 2003a;24:159–160. doi: 10.1007/s10072-003-0108-0. [DOI] [PubMed] [Google Scholar]
  36. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003b;299:256–259. doi: 10.1126/science.1077209. [DOI] [PubMed] [Google Scholar]
  37. Bonilla E, Tanji K, Hirano M, Vu TH, DiMauro S, Schon EA. Mitochondrial involvement in Alzheimer's disease. Biochim. Biophys. Acta. 1999;1410:171–182. doi: 10.1016/s0005-2728(98)00165-0. [DOI] [PubMed] [Google Scholar]
  38. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–1780. doi: 10.1093/nar/27.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P, Jr, Lerner RA, Kelly JW. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol. 2006;2:249–253. doi: 10.1038/nchembio782. [DOI] [PubMed] [Google Scholar]
  40. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat. Med. 2004;10(Suppl):S2–S9. doi: 10.1038/nm1067. [DOI] [PubMed] [Google Scholar]
  41. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages) J. Neurol. 2002;249(Suppl 3) doi: 10.1007/s00415-002-1301-4. ), III/1–5. [DOI] [PubMed] [Google Scholar]
  42. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 2003;24:197–211. doi: 10.1016/s0197-4580(02)00065-9. [DOI] [PubMed] [Google Scholar]
  43. Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered. Mov. Disord. 2006;21:2042–2051. doi: 10.1002/mds.21065. [DOI] [PubMed] [Google Scholar]
  44. Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol. 2007;114:231–241. doi: 10.1007/s00401-007-0244-3. [DOI] [PubMed] [Google Scholar]
  45. Brack C, Lithgow G, Osiewacz H, Toussaint O. EMBO WORKSHOP REPORT: molecular and cellular gerontology Serpiano, Switzerland, September 18–22, 1999. EMBO J. 2000;19:1929–1934. doi: 10.1093/emboj/19.9.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004;287:C817–C833. doi: 10.1152/ajpcell.00139.2004. [DOI] [PubMed] [Google Scholar]
  47. Buchman AS, Shulman JM, Nag S, Leurgans SE, Arnold SE, Morris MC, Schneider JA, Bennett DA. Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann. Neurol. 2012;71:258–266. doi: 10.1002/ana.22588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenco J, Fraifeld VE, de Magalhaes JP. LongevityMap: a database of human genetic variants associated with longevity. Trends Genet. 2013;29:559–560. doi: 10.1016/j.tig.2013.08.003. [DOI] [PubMed] [Google Scholar]
  49. Bueler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp. Neurol. 2009;218:235–246. doi: 10.1016/j.expneurol.2009.03.006. [DOI] [PubMed] [Google Scholar]
  50. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci. USA. 1983;80:4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B. Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol. Appl. Neurobiol. 2002;28:283–291. doi: 10.1046/j.1365-2990.2002.00393.x. [DOI] [PubMed] [Google Scholar]
  52. de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157:1515–1526. doi: 10.1016/j.cell.2014.05.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Cai Z, Fan LW, Kaizaki A, Tien LT, Ma T, Pang Y, Lin S, Lin RC, Simpson KL. Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Dev. Neurosci. 2012;35:155–171. doi: 10.1159/000346156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A. Relation of aging with oxidative protein damage parameters in the rat skeletal muscle. Clin. Biochem. 2003;36:51–55. doi: 10.1016/s0009-9120(02)00407-1. [DOI] [PubMed] [Google Scholar]
  55. Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 2009;87:2484–2497. doi: 10.1002/jnr.22074. [DOI] [PubMed] [Google Scholar]
  56. Cantuti-Castelvetri I, Lin MT, Zheng K, Keller-McGandy CE, Betensky RA, Johns DR, Beal MF, Standaert DG, Simon DK. Somatic mitochondrial DNA mutations in single neurons and glia. Neurobiol. Aging. 2005;26:1343–1355. doi: 10.1016/j.neurobiolaging.2004.11.008. [DOI] [PubMed] [Google Scholar]
  57. Carlsson A, Winblad B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J. Neural. Transm. 1976;38:271–276. doi: 10.1007/BF01249444. [DOI] [PubMed] [Google Scholar]
  58. Carvey PM, Chang Q, Lipton JW, Ling Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson's disease. Front. Biosci. 2003;8:s826–s837. doi: 10.2741/1158. [DOI] [PubMed] [Google Scholar]
  59. Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, Pavon N, Pisani A, Bernardi G, Moratalla R, Calabresi P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 2003;23:8506–8512. doi: 10.1523/JNEUROSCI.23-24-08506.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Cersosimo MG, Benarroch EE. Pathological correlates of gastrointestinal dysfunction in Parkinson's disease. Neurobiol. Dis. 2011;46:559–564. doi: 10.1016/j.nbd.2011.10.014. [DOI] [PubMed] [Google Scholar]
  61. Chao J, Yu MS, Ho YS, Wang M, Chang RC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic. Biol. Med. 2008;45:1019–1026. doi: 10.1016/j.freeradbiomed.2008.07.002. [DOI] [PubMed] [Google Scholar]
  62. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010;67:715–725. doi: 10.1002/ana.21995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Cheng HC, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, Wang C, During M, Talloczy Z, Tanaka K, Komatsu M, Kobayashi K, Okano H, Kholodilov N, Burke RE. Akt suppresses retrograde degeneration of dopaminergic axons by inhibition of macroautophagy. J. Neurosci. 2011;31:2125–2135. doi: 10.1523/JNEUROSCI.5519-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Chinnery PF, Howell N, Andrews RM, Turnbull DM. Mitochondrial DNA analysis: polymorphisms and pathogenicity. J. Med. Genet. 1999;36:505–510. [PMC free article] [PubMed] [Google Scholar]
  65. Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease? J. Intern. Med. 2013;273:429–436. doi: 10.1111/joim.12029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH. Nurr1 in Parkinson's disease and related disorders. J. Comp. Neurol. 2006;494:495–514. doi: 10.1002/cne.20828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev. 2009;8:18–30. doi: 10.1016/j.arr.2008.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 2005;6:889–898. doi: 10.1038/nrn1788. [DOI] [PubMed] [Google Scholar]
  69. Collier TJ, Kanaan NM, Kordower JH. Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat. Rev. Neurosci. 2011;12:359–366. doi: 10.1038/nrn3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Conley KE, Amara CE, Jubrias SA, Marcinek DJ. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp. Physiol. 2007;92:333–339. doi: 10.1113/expphysiol.2006.034330. [DOI] [PubMed] [Google Scholar]
  71. Conover JC, Shook BA. Aging of the Subventricular Zone Neural Stem Cell Niche. Aging Dis. 2011;2:149–163. [PMC free article] [PubMed] [Google Scholar]
  72. Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J, Chettle D, Gorell J. Whole-body lifetime occupational lead exposure and risk of Parkinson's disease. Environ. Health Perspect. 2006;114:1872–1876. doi: 10.1289/ehp.9102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–372. doi: 10.1016/j.tins.2012.04.001. [DOI] [PubMed] [Google Scholar]
  74. Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J. Neuroinflammation. 2005;2:14. doi: 10.1186/1742-2094-2-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Cruz-Muros I, Afonso-Oramas D, Abreu P, Barroso-Chinea P, Rodriguez M, Gonzalez MC, Hernandez TG. Aging of the rat mesostriatal system: differences between the nigrostriatal and the mesolimbic compartments. Exp. Neurol. 2007a;204:147–161. doi: 10.1016/j.expneurol.2006.10.004. [DOI] [PubMed] [Google Scholar]
  76. Cruz-Muros I, Afonso-Oramas D, Abreu P, Barroso-Chinea P, Rodriguez M, Gonzalez MC, Hernandez TG. Deglycosylation and subcellular redistribution of VMAT2 in the mesostriatal system during normal aging. Neurobiol. Aging. 2008;29:1702–1711. doi: 10.1016/j.neurobiolaging.2007.04.003. [DOI] [PubMed] [Google Scholar]
  77. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305:1292–1295. doi: 10.1126/science.1101738. [DOI] [PubMed] [Google Scholar]
  78. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61:71–90. doi: 10.1002/glia.22350. [DOI] [PubMed] [Google Scholar]
  79. Dai Y, Kiselak T, Clark J, Clore E, Zheng K, Cheng A, Kujoth GC, Prolla TA, Maratos-Flier E, Simon DK. Behavioral and metabolic characterization of heterozygous and homozygous POLG mutator mice. Mitochondrion. 2013;13:282–291. doi: 10.1016/j.mito.2013.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience. 1993;52:1–6. doi: 10.1016/0306-4522(93)90175-f. [DOI] [PubMed] [Google Scholar]
  81. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain. 1999;122(8):1437–1448. doi: 10.1093/brain/122.8.1437. (Pt. [DOI] [PubMed] [Google Scholar]
  82. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8:752–758. doi: 10.1038/nn1472. [DOI] [PubMed] [Google Scholar]
  83. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science. 2003;302:819–822. doi: 10.1126/science.1087753. [DOI] [PubMed] [Google Scholar]
  84. De La Hera DP, Corradi GR, Adamo HP, De Tezanos Pinto F. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake. Biochem. J. 2013;450:47–53. doi: 10.1042/BJ20120739. [DOI] [PubMed] [Google Scholar]
  85. De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 2008;31:151–173. doi: 10.1146/annurev.neuro.31.061307.090711. [DOI] [PubMed] [Google Scholar]
  86. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P. Emerging restorative treatments for Parkinson's disease. Prog. Neurobiol. 2008;85:407–432. doi: 10.1016/j.pneurobio.2008.05.001. [DOI] [PubMed] [Google Scholar]
  87. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 2008;283:9089–9100. doi: 10.1074/jbc.M710012200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Devor M. Unexplained peculiarities of the dorsal root ganglion. Pain. 1999;(Suppl 6):S27–S35. doi: 10.1016/S0304-3959(99)00135-9. [DOI] [PubMed] [Google Scholar]
  89. Di Monte DA, Lavasani M, Manning-Bog AB. Environmental factors in Parkinson's disease. Neurotoxicology. 2002;23:487–502. doi: 10.1016/s0161-813x(02)00099-2. [DOI] [PubMed] [Google Scholar]
  90. Dillin A, Kelly JW. Medicine: the yin-yang of sirtuins. Science. 2007;317:461–462. doi: 10.1126/science.1146585. [DOI] [PubMed] [Google Scholar]
  91. Doorn KJ, Lucassen PJ, Boddeke HW, Prins M, Berendse HW, Drukarch B, van Dam AM. Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. Prog. Neurobiol. 2012;98:222–238. doi: 10.1016/j.pneurobio.2012.06.005. [DOI] [PubMed] [Google Scholar]
  92. Doty RL. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 2012;8:329–339. doi: 10.1038/nrneurol.2012.80. [DOI] [PubMed] [Google Scholar]
  93. Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT. The comparative biology of neuromelanin and lipofuscin in the human brain. Cell. Mol. Life Sci. 2008;65:1669–1682. doi: 10.1007/s00018-008-7581-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Double KL, Reyes S, Werry EL, Halliday GM. Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog. Neurobiol. 2010;92:316–329. doi: 10.1016/j.pneurobio.2010.06.001. [DOI] [PubMed] [Google Scholar]
  95. Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72:432–438. doi: 10.1212/01.wnl.0000341769.50075.bb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 1999;57:195–206. doi: 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  97. Edgar D, Trifunovic A. The mtDNA mutator mouse: dissecting mitochondrial involvement in aging. Aging. 2009;1:1028–1032. doi: 10.18632/aging.100109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J. Comp. Neurol. 1998;401:253–265. [PubMed] [Google Scholar]
  99. Ethell DW, Fei Q. Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family. Antioxid. Redox Signal. 2009;11:529–540. doi: 10.1089/ars.2008.2228. [DOI] [PubMed] [Google Scholar]
  100. Fan LW, Tien LT, Lin RC, Simpson KL, Rhodes PG, Cai Z. Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Neurobiol. Dis. 2011a;44:304–316. doi: 10.1016/j.nbd.2011.07.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Fan LW, Tien LT, Zheng B, Pang Y, Lin RC, Simpson KL, Ma T, Rhodes PG, Cai Z. Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity. Brain Behav. Immun. 2011b;25:286–297. doi: 10.1016/j.bbi.2010.09.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC, Comegna M, Romano S, Salvatore G, Santoro M, Cimino F. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ. 2012;19:713–721. doi: 10.1038/cdd.2011.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Fayet G, Jansson M, Sternberg D, Moslemi AR, Blondy P, Lombes A, Fardeau M, Oldfors A. Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul. Disord. 2002;12:484–493. doi: 10.1016/s0960-8966(01)00332-7. [DOI] [PubMed] [Google Scholar]
  104. Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991;114(5):2283–2301. doi: 10.1093/brain/114.5.2283. (Pt. [DOI] [PubMed] [Google Scholar]
  105. Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Prog. Neurobiol. 2005;75:109–124. doi: 10.1016/j.pneurobio.2005.02.001. [DOI] [PubMed] [Google Scholar]
  106. Ferrer I, Martinez A, Blanco R, Dalfo E, Carmona M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J. Neural. Transm. 2011;118:821–839. doi: 10.1007/s00702-010-0482-8. [DOI] [PubMed] [Google Scholar]
  107. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 2010;21:187–221. doi: 10.1515/revneuro.2010.21.3.187. [DOI] [PubMed] [Google Scholar]
  108. Flanary B. The role of microglial cellular senescence in the aging and Alzheimer diseased brain. Rejuvenation Res. 2005;8:82–85. doi: 10.1089/rej.2005.8.82. [DOI] [PubMed] [Google Scholar]
  109. Florenzano F. Localization of axonal motor molecules machinery in neurodegenerative disorders. Int. J. Mol. Sci. 2012;13:5195–5206. doi: 10.3390/ijms13045195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016. [DOI] [PubMed] [Google Scholar]
  111. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J. Neurosci. 2012;32:7585–7593. doi: 10.1523/JNEUROSCI.5809-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Galvan V, Jin K. Neurogenesis in the aging brain. Clin. Interv. Aging. 2007;2:605–610. doi: 10.2147/cia.s1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Galvin JE, Uryu K, Lee VM, Trojanowski JQ. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc. Natl Acad. Sci. USA. 1999;96:13450–13455. doi: 10.1073/pnas.96.23.13450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Gelinas DS, McLaurin J. PPAR-alpha expression inversely correlates with inflammatory cytokines IL-1beta and TNF-alpha in aging rats. Neurochem. Res. 2005;30:1369–1375. doi: 10.1007/s11064-005-8341-y. [DOI] [PubMed] [Google Scholar]
  115. Gelmetti V, Ferraris A, Brusa L, Romano F, Lombardi F, Barzaghi C, Stanzione P, Garavaglia B, Dallapiccola B, Valente EM. Late onset sporadic Parkinson's disease caused by PINK1 mutations: clinical and functional study. Mov. Disord. 2008;23:881–885. doi: 10.1002/mds.21960. [DOI] [PubMed] [Google Scholar]
  116. Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM. Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J. Neurochem. 2002;80:168–177. doi: 10.1046/j.0022-3042.2001.00684.x. [DOI] [PubMed] [Google Scholar]
  117. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation: a mechanism in common. Science. 1954;119:623–626. doi: 10.1126/science.119.3097.623. [DOI] [PubMed] [Google Scholar]
  118. Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson's disease. Neurosci. Biobehav. Rev. 2000;24:655–668. doi: 10.1016/s0149-7634(00)00028-2. [DOI] [PubMed] [Google Scholar]
  119. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–989. doi: 10.1126/science.290.5493.985. [DOI] [PubMed] [Google Scholar]
  120. Gilley J, Seereeram A, Ando K, Mosely S, Andrews S, Kerschensteiner M, Misgeld T, Brion JP, Anderton B, Hanger DP, Coleman MP. Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol. Aging. 2012;33:621 e621–621 e615. doi: 10.1016/j.neurobiolaging.2011.02.014. [DOI] [PubMed] [Google Scholar]
  121. Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J. Neuroimmunol. 2004;147:141–144. doi: 10.1016/j.jneuroim.2003.10.031. [DOI] [PubMed] [Google Scholar]
  122. Going JJ, Stuart RC, Downie M, Fletcher-Monaghan AJ, Keith WN. ‘Senescence-associated’ beta-galactosidase activity in the upper gastrointestinal tract. J. Pathol. 2002;196:394–400. doi: 10.1002/path.1059. [DOI] [PubMed] [Google Scholar]
  123. Gonzalez-Hernandez T, Barroso-Chinea P, Acevedo A, Salido E, Rodriguez M. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur. J. Neurosci. 2001;13:57–67. [PubMed] [Google Scholar]
  124. Gonzalez-Hernandez T, Barroso-Chinea P, Rodriguez M. Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. Mov. Disord. 2004;19:1029–1042. doi: 10.1002/mds.20206. [DOI] [PubMed] [Google Scholar]
  125. Gonzalez-Perez O, Quinones-Hinojosa A. Astrocytes as neural stem cells in the adult brain. J. Stem Cells. 2012;7:181–188. [PMC free article] [PubMed] [Google Scholar]
  126. Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J. Neurosci. 1998;18:2040–2055. doi: 10.1523/JNEUROSCI.18-06-02040.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology. 1998;50:1346–1350. doi: 10.1212/wnl.50.5.1346. [DOI] [PubMed] [Google Scholar]
  128. Goss JR, Finch CE, Morgan DG. Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol. Aging. 1991;12:165–170. doi: 10.1016/0197-4580(91)90056-p. [DOI] [PubMed] [Google Scholar]
  129. Greenwood CE, Tatton WG, Seniuk NA, Biddle FG. Increased dopamine synthesis in aging substantia nigra neurons. Neurobiol. Aging. 1991;12:557–565. doi: 10.1016/0197-4580(91)90087-z. [DOI] [PubMed] [Google Scholar]
  130. Grote SS, Moses SG, Robins E, Hudgens RW, Croninger AB. A study of selected catecholamine metabolizing enzymes: a comparison of depressive suicides and alcoholic suicides with controls. J. Neurochem. 1974;23:791–802. doi: 10.1111/j.1471-4159.1974.tb04405.x. [DOI] [PubMed] [Google Scholar]
  131. Gu M, Cooper JM, Taanman JW, Schapira AH. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann. Neurol. 1998;44:177–186. doi: 10.1002/ana.410440207. [DOI] [PubMed] [Google Scholar]
  132. Halliday GM. Thalamic changes in Parkinson's disease. Parkinsonism Relat. Disord. 2009;15(Suppl 3):S152–S155. doi: 10.1016/S1353-8020(09)70804-1. [DOI] [PubMed] [Google Scholar]
  133. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson's disease. Mov. Disord. 2011;26:6–17. doi: 10.1002/mds.23455. [DOI] [PubMed] [Google Scholar]
  134. Halliday GM, Fedorow H, Rickert CH, Gerlach M, Riederer P, Double KL. Evidence for specific phases in the development of human neuromelanin. J. Neural. Transm. 2006;113:721–728. doi: 10.1007/s00702-006-0449-y. [DOI] [PubMed] [Google Scholar]
  135. Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
  136. Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK. Pesticide exposure and risk of Parkinson's disease: a family-based case-control study. BMC Neurol. 2008;8:6. doi: 10.1186/1471-2377-8-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  138. Harman D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 1972;20:145–147. doi: 10.1111/j.1532-5415.1972.tb00787.x. [DOI] [PubMed] [Google Scholar]
  139. Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson's disease. J. Chem. Neuroanat. 2011;42:127–130. doi: 10.1016/j.jchemneu.2011.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Hayakawa N, Kato H, Araki T. Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mech. Ageing Dev. 2007;128:311–316. doi: 10.1016/j.mad.2007.01.005. [DOI] [PubMed] [Google Scholar]
  141. Haycock JW, Becker L, Ang L, Furukawa Y, Hornykiewicz O, Kish SJ. Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. J. Neurochem. 2003;87:574–585. doi: 10.1046/j.1471-4159.2003.02017.x. [DOI] [PubMed] [Google Scholar]
  142. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009;43:67–93. doi: 10.1146/annurev-genet-102808-114910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. He YH, Lu X, Wu H, Cai WW, Yang LQ, Xu LY, Sun HP, Kong QP. Mitochondrial DNA content contributes to healthy aging in Chinese: a study from nonagenarians and centenarians. Neurobiol. Aging. 2014;35:1779 e1771–1779 e1774. doi: 10.1016/j.neurobiolaging.2014.01.015. [DOI] [PubMed] [Google Scholar]
  144. Henderson JM, Carpenter K, Cartwright H, Halliday GM. Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson's disease: clinical and therapeutic implications. Brain. 2000;123(7):1410–1421. doi: 10.1093/brain/123.7.1410. (Pt. [DOI] [PubMed] [Google Scholar]
  145. Herbener GH. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J. Gerontol. 1976;31:8–12. doi: 10.1093/geronj/31.1.8. [DOI] [PubMed] [Google Scholar]
  146. Hess EJ, Bracha HS, Kleinman JE, Creese I. Dopamine receptor subtype imbalance in schizophrenia. Life Sci. 1987;40:1487–1497. doi: 10.1016/0024-3205(87)90381-x. [DOI] [PubMed] [Google Scholar]
  147. Hipkiss AR. Aging risk factors and Parkinson's disease: contrasting roles of common dietary constituents. Neurobiol. Aging. 2014;35:1469–1472. doi: 10.1016/j.neurobiolaging.2013.11.032. [DOI] [PubMed] [Google Scholar]
  148. Hirai S. [Histochemical study on the regressive degeneration of the senile brain, with special reference to the aging of the substantia nigra] Shinkei Kenkyu No Shimpo. 1968;12:845–849. [PubMed] [Google Scholar]
  149. Hirrlinger J, Schulz JB, Dringen R. Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J. Neurosci. Res. 2002;69:318–326. doi: 10.1002/jnr.10308. [DOI] [PubMed] [Google Scholar]
  150. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl Acad. Sci. USA. 1987;84:5976–5980. doi: 10.1073/pnas.84.16.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature. 1988;334:345–348. doi: 10.1038/334345a0. [DOI] [PubMed] [Google Scholar]
  152. Hirsch EC, Graybiel AM, Agid Y. Selective vulnerability of pigmented dopaminergic neurons in Parkinson's disease. Acta Neurol. Scand. Suppl. 1989;126:19–22. doi: 10.1111/j.1600-0404.1989.tb01778.x. [DOI] [PubMed] [Google Scholar]
  153. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68:326–337. doi: 10.1212/01.wnl.0000252807.38124.a3. [DOI] [PubMed] [Google Scholar]
  154. Hjelmborg JvB, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum. Genet. 2006;119:312–321. doi: 10.1007/s00439-006-0144-y. [DOI] [PubMed] [Google Scholar]
  155. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci. 2004;7:726–735. doi: 10.1038/nn1265. [DOI] [PubMed] [Google Scholar]
  156. Holliday R. The biological significance of meiosis. Symp. Soc. Exp. Biol. 1984;38:381–394. [PubMed] [Google Scholar]
  157. Hornykiewicz O. Ageing and neurotoxins as causative factors in idiopathic Parkinson's disease–a critical analysis of the neurochemical evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1989;13:319–328. doi: 10.1016/0278-5846(89)90121-8. [DOI] [PubMed] [Google Scholar]
  158. Hornykiewicz O. Basic research on dopamine in Parkinson's disease and the discovery of the nigrostriatal dopamine pathway: the view of an eyewitness. Neurodegener. Dis. 2008;5:114–117. doi: 10.1159/000113678. [DOI] [PubMed] [Google Scholar]
  159. Hornykiewicz O. A brief history of levodopa. J. Neurol. 2010;257:S249–S252. doi: 10.1007/s00415-010-5741-y. [DOI] [PubMed] [Google Scholar]
  160. Hubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology. 2012;13:21–35. doi: 10.1007/s10522-011-9331-x. [DOI] [PubMed] [Google Scholar]
  161. Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience. 1996;72:355–363. doi: 10.1016/0306-4522(95)00578-1. [DOI] [PubMed] [Google Scholar]
  162. Hwang O. Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 2013;22:11–17. doi: 10.5607/en.2013.22.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Ibanez P, De Michele G, Bonifati V, Lohmann E, Thobois S, Pollak P, Agid Y, Heutink P, Durr A, Brice A. Screening for DJ-1 mutations in early onset autosomal recessive parkinsonism. Neurology. 2003;61:1429–1431. doi: 10.1212/01.wnl.0000094121.48373.fd. [DOI] [PubMed] [Google Scholar]
  164. Irrcher I, Aleyasin H, Seifert EL, Hewitt SJ, Chhabra S, Phillips M, Lutz AK, Rousseaux MW, Bevilacqua L, Jahani-Asl A, Callaghan S, MacLaurin JG, Winklhofer KF, Rizzu P, Rippstein P, Kim RH, Chen CX, Fon EA, Slack RS, Harper ME, McBride HM, Mak TW, Park DS. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 2010;19:3734–3746. doi: 10.1093/hmg/ddq288. [DOI] [PubMed] [Google Scholar]
  165. Ishibashi K, Oda K, Ishiwata K, Ishii K. Comparison of dopamine transporter decline in a patient with Parkinson's disease and normal aging effect. J. Neurol. Sci. 2014;339:207–209. doi: 10.1016/j.jns.2014.01.015. [DOI] [PubMed] [Google Scholar]
  166. Isobe K, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. iPSCs, aging and age-related diseases. N. Biotechnol. 2014;31:411–421. doi: 10.1016/j.nbt.2014.04.004. [DOI] [PubMed] [Google Scholar]
  167. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 1998;57:1–9. doi: 10.1016/s0169-328x(98)00040-0. [DOI] [PubMed] [Google Scholar]
  168. Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ, Foote SL, Morrison JH, Bloom FE. Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci. Lett. 1983;39:95–100. doi: 10.1016/0304-3940(83)90171-4. [DOI] [PubMed] [Google Scholar]
  169. Jadiya P, Chatterjee M, Sammi SR, Kaur S, Palit G, Nazir A. Sir-2.1 modulates ‘calorie-restriction-mediated’ prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson's disease. Biochem. Biophys. Res. Commun. 2011;413:306–310. doi: 10.1016/j.bbrc.2011.08.092. [DOI] [PubMed] [Google Scholar]
  170. Jang YC, Van Remmen H. The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp. Gerontol. 2009;44:256–260. doi: 10.1016/j.exger.2008.12.006. [DOI] [PubMed] [Google Scholar]
  171. Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov. Disord. 2002;27:8–30. doi: 10.1002/mds.23795. [DOI] [PubMed] [Google Scholar]
  172. Jenner P. Oxidative stress in Parkinson's disease. Ann. Neurol. 2003;53(Suppl 3):S26–S36. doi: 10.1002/ana.10483. ; discussion S36-28. [DOI] [PubMed] [Google Scholar]
  173. Jenner P. Oxidative stress and Parkinson's disease. Handb. Clin. Neurol. 2007;83:507–520. doi: 10.1016/S0072-9752(07)83024-7. [DOI] [PubMed] [Google Scholar]
  174. Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech. Ageing Dev. 2008;129:467–474. doi: 10.1016/j.mad.2008.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Jin F, Wu Q, Lu YF, Gong QH, Shi JS. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur. J. Pharmacol. 2008;600:78–82. doi: 10.1016/j.ejphar.2008.10.005. [DOI] [PubMed] [Google Scholar]
  176. Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol. Ther. 2012;133:142–150. doi: 10.1016/j.pharmthera.2011.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Kanaan NM, Kordower JH, Collier TJ. Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. J. Comp. Neurol. 2007;502:683–700. doi: 10.1002/cne.21333. [DOI] [PubMed] [Google Scholar]
  178. Kanaan NM, Kordower JH, Collier TJ. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: relevance in selective neuronal vulnerability to degeneration. Eur. J. Neurosci. 2008;27:3205–3215. doi: 10.1111/j.1460-9568.2008.06307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Kastner A, Hirsch EC, Herrero MT, Javoy-Agid F, Agid Y. Immunocytochemical quantification of tyrosine hydroxylase at a cellular level in the mesencephalon of control subjects and patients with Parkinson's and Alzheimer's disease. J. Neurochem. 1993;61:1024–1034. doi: 10.1111/j.1471-4159.1993.tb03616.x. [DOI] [PubMed] [Google Scholar]
  180. Kayali R, Aydin S, Cakatay U. Effect of gender on main clinical chemistry parameters in aged rats. Curr. Aging Sci. 2009;2:67–71. doi: 10.2174/1874609810902010067. [DOI] [PubMed] [Google Scholar]
  181. Kidd PM. Parkinson's disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern. Med. Rev. 2000;5:502–529. [PubMed] [Google Scholar]
  182. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317:1220–1224. doi: 10.1126/science.1140481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 1988;318:876–880. doi: 10.1056/NEJM198804073181402. [DOI] [PubMed] [Google Scholar]
  184. Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson's disease. J. Neurochem. 1992;58:642–648. doi: 10.1111/j.1471-4159.1992.tb09766.x. [DOI] [PubMed] [Google Scholar]
  185. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell Neurosci. 2000;16:724–739. doi: 10.1006/mcne.2000.0914. [DOI] [PubMed] [Google Scholar]
  186. Kohama SG, Goss JR, Finch CE, McNeill TH. Increases of glial fibrillary acidic protein in the aging female mouse brain. Neurobiol. Aging. 1995;16:59–67. doi: 10.1016/0197-4580(95)80008-f. [DOI] [PubMed] [Google Scholar]
  187. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain. 2013;136:2419–2431. doi: 10.1093/brain/awt192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 2006;38:518–520. doi: 10.1038/ng1778. [DOI] [PubMed] [Google Scholar]
  189. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–318. doi: 10.1016/0166-2236(96)10049-7. [DOI] [PubMed] [Google Scholar]
  190. Kusnoor SV, Muly EC, Morgan JI, Deutch AY. Is the loss of thalamostriatal neurons protective in parkinsonism? Parkinsonism Relat. Disord. 2009;15(Suppl 3):S162–S166. doi: 10.1016/S1353-8020(09)70806-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell. 2007;6:607–618. doi: 10.1111/j.1474-9726.2007.00312.x. [DOI] [PubMed] [Google Scholar]
  192. Langston JW, Ballard P. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease. Can. J. Neurol. Sci. 1984;11:160–165. doi: 10.1017/s0317167100046333. [DOI] [PubMed] [Google Scholar]
  193. Lansbury PT, Jr, Brice A. Genetics of Parkinson's disease and biochemical studies of implicated gene products. Curr. Opin. Genet. Dev. 2002;12:299–306. doi: 10.1016/s0959-437x(02)00302-7. [DOI] [PubMed] [Google Scholar]
  194. de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology. 2005;64:2040–2045. doi: 10.1212/01.WNL.0000166038.67153.9F. [DOI] [PubMed] [Google Scholar]
  195. Lauri A, Pompilio G, Capogrossi MC. The mitochondrial genome in aging and senescence. Ageing Res. Rev. 2014;18:1–15. doi: 10.1016/j.arr.2014.07.001. [DOI] [PubMed] [Google Scholar]
  196. Lauri A, Pompilio G, Capogrossi MC. The mitochondrial genome in aging and senescence. Ageing Res. Rev. 2014b;18C:1–15. doi: 10.1016/j.arr.2014.07.001. [DOI] [PubMed] [Google Scholar]
  197. Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O. Receptor basis for dopaminergic supersensitivity in Parkinson's disease. Nature. 1978;273:59–61. doi: 10.1038/273059a0. [DOI] [PubMed] [Google Scholar]
  198. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 2010;285:9262–9272. doi: 10.1074/jbc.M109.081125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson's disease. Nature. 1998;395:451–452. doi: 10.1038/26652. [DOI] [PubMed] [Google Scholar]
  200. Levy G. The relationship of Parkinson disease with aging. Arch. Neurol. 2007;64:1242–1246. doi: 10.1001/archneur.64.9.1242. [DOI] [PubMed] [Google Scholar]
  201. Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK. Stabilization of alpha-synuclein protein with aging and familial Parkinson's disease-linked A53T mutation. J. Neurosci. 2004;24:7400–7409. doi: 10.1523/JNEUROSCI.1370-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Li N, Bates DJ, An J, Terry DA, Wang E. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging. 2011;32:944–955. doi: 10.1016/j.neurobiolaging.2009.04.020. [DOI] [PubMed] [Google Scholar]
  203. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–1132. doi: 10.1126/science.8493557. [DOI] [PubMed] [Google Scholar]
  204. Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov. Disord. 2002;17:116–124. doi: 10.1002/mds.10078. [DOI] [PubMed] [Google Scholar]
  205. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1:642–645. doi: 10.1016/s0140-6736(89)92145-4. [DOI] [PubMed] [Google Scholar]
  206. Litvan I, Chesselet MF, Gasser T, Di Monte DA, Parker D, Jr, Hagg T, Hardy J, Jenner P, Myers RH, Price D, Hallett M, Langston WJ, Lang AE, Halliday G, Rocca W, Duyckaerts C, Dickson DW, Ben-Shlomo Y, Goetz CG, Melamed E. The etiopathogenesis of Parkinson disease and suggestions for future research. Part II. J. Neuropathol. Exp. Neurol. 2007a;66:329–336. doi: 10.1097/nen.0b013e318053716a. [DOI] [PubMed] [Google Scholar]
  207. Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH, Parker D, Jr, Price DL. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J. Neuropathol. Exp. Neurol. 2007b;66:251–257. doi: 10.1097/nen.0b013e3180415e42. [DOI] [PubMed] [Google Scholar]
  208. Liu JP. Molecular mechanisms of aging and related diseases. Clin. Exp. Pharmacol. Physiol. 2014;41:445–458. doi: 10.1111/1440-1681.12247. [DOI] [PubMed] [Google Scholar]
  209. Liu XH, Kato H, Araki T, Itoyama Y, Kato K, Kogure K. An immunohistochemical observation of manganese superoxide dismutase in rat substantia nigra after occlusion of middle cerebral artery. Neurosci. Lett. 1994;173:103–106. doi: 10.1016/0304-3940(94)90159-7. [DOI] [PubMed] [Google Scholar]
  210. Liu J, Wang YY, Liu L, Wang QD, Yuan ZY, Zhang ZX, Gu P, Wang MW. Damage to the nigrostriatal system in the MPTP-treated SAMP8 mouse. Neurosci. Lett. 2008;448:184–188. doi: 10.1016/j.neulet.2008.10.070. [DOI] [PubMed] [Google Scholar]
  211. Liu K, Shi N, Sun Y, Zhang T, Sun X. Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem. Res. 2013;38:201–207. doi: 10.1007/s11064-012-0909-8. [DOI] [PubMed] [Google Scholar]
  212. Lloyd K, Hornykiewicz O. Parkinson's disease: activity of L-dopa decarboxylase in discrete brain regions. Science. 1970;170:1212–1213. doi: 10.1126/science.170.3963.1212. [DOI] [PubMed] [Google Scholar]
  213. Lohr JB, Jeste DV. Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatr. Scand. 1988;77:689–697. doi: 10.1111/j.1600-0447.1988.tb05189.x. [DOI] [PubMed] [Google Scholar]
  214. Longo VD, Mitteldorf J, Skulachev VP. Programmed and altruistic ageing. Nat. Rev. Genet. 2005;6:866–872. doi: 10.1038/nrg1706. [DOI] [PubMed] [Google Scholar]
  215. Lucking CB, Abbas N, Durr A, Bonifati V, Bonnet AM, de Broucker T, De Michele G, Wood NW, Agid Y, Brice A. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The European Consortium on Genetic Susceptibility in Parkinson's Disease and the French Parkinson's Disease Genetics Study Group. Lancet. 1998;352:1355–1356. doi: 10.1016/s0140-6736(05)60746-5. [DOI] [PubMed] [Google Scholar]
  216. Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med. 2000;342:1560–1567. doi: 10.1056/NEJM200005253422103. [DOI] [PubMed] [Google Scholar]
  217. Lynch AM, Murphy KJ, Deighan BF, O'Reilly JA, Gun'ko YK, Cowley TR, Gonzalez-Reyes RE, Lynch MA. The impact of glial activation in the aging brain. Aging Dis. 2010;1:262–278. [PMC free article] [PubMed] [Google Scholar]
  218. Ma SY, Roytt M, Collan Y, Rinne JO. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol. Appl. Neurobiol. 1999;25:394–399. doi: 10.1046/j.1365-2990.1999.00202.x. [DOI] [PubMed] [Google Scholar]
  219. Mack AF, Wolburg H. A novel look at astrocytes: aquaporins, ionic homeostasis, and the role of the microenvironment for regeneration in the CNS. Neuroscientist. 2013;19:195–207. doi: 10.1177/1073858412447981. [DOI] [PubMed] [Google Scholar]
  220. de Magalhaes JP, Costa J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 2009;22:1770–1774. doi: 10.1111/j.1420-9101.2009.01783.x. [DOI] [PubMed] [Google Scholar]
  221. de Magalhaes JP, Wuttke D, Wood SH, Plank M, Vora C. Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol. Rev. 2012;64:88–101. doi: 10.1124/pr.110.004499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Magenta A, Greco S, Gaetano C, Martelli F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013;14:17319–17346. doi: 10.3390/ijms140917319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci. 2010;30:1166–1175. doi: 10.1523/JNEUROSCI.3944-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Manaye KF, McIntire DD, Mann DM, German DC. Locus coeruleus cell loss in the aging human brain: a non-random process. J. Comp. Neurol. 1995;358:79–87. doi: 10.1002/cne.903580105. [DOI] [PubMed] [Google Scholar]
  225. Mann DM. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech. Ageing Dev. 1983;23:73–94. doi: 10.1016/0047-6374(83)90100-8. [DOI] [PubMed] [Google Scholar]
  226. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J. Biol. Chem. 2002;277:1641–1644. doi: 10.1074/jbc.C100560200. [DOI] [PubMed] [Google Scholar]
  227. Mansour H, Chamberlain CG, Weible MW, II, Hughes S, Chu Y, Chan-Ling T. Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell. 2008;7:526–540. doi: 10.1111/j.1474-9726.2008.00402.x. [DOI] [PubMed] [Google Scholar]
  228. Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson's disease. J. Neurochem. 2009;110:966–975. doi: 10.1111/j.1471-4159.2009.06189.x. [DOI] [PubMed] [Google Scholar]
  229. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 2008;118:777–788. doi: 10.1172/JCI32806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Maruszak A, Gaweda-Walerych K, Soltyszewski I, Zekanowski C. Mitochondrial DNA in pathogenesis of Alzheimer's and Parkinson's diseases. Acta Neurobiol. Exp. 2006;66:153–176. doi: 10.55782/ane-2006-1602. [DOI] [PubMed] [Google Scholar]
  231. Marzban G, Grillari J, Reisinger E, Hemetsberger T, Grabherr R, Katinger H. Age-related alterations in the protein expression profile of C57BL/6J mouse pituitaries. Exp. Gerontol. 2002;37:1451–1460. doi: 10.1016/s0531-5565(02)00117-1. [DOI] [PubMed] [Google Scholar]
  232. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 2009;29:444–453. doi: 10.1523/JNEUROSCI.4029-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res. Rev. 2004;3:445–464. doi: 10.1016/j.arr.2004.08.001. [DOI] [PubMed] [Google Scholar]
  234. McCormack AL, Di Monte DA, Delfani K, Irwin I, DeLanney LE, Langston WJ, Janson AM. Aging of the nigrostriatal system in the squirrel monkey. J. Comp. Neurol. 2004;471:387–395. doi: 10.1002/cne.20036. [DOI] [PubMed] [Google Scholar]
  235. McGeer PL, McGeer EG, Suzuki JS. Aging and extrapyramidal function. Arch. Neurol. 1977;34:33–35. doi: 10.1001/archneur.1977.00500130053010. [DOI] [PubMed] [Google Scholar]
  236. McGeer PL, Itagaki S, Akiyama H, McGeer EG. Rate of cell death in parkinsonism indicates active neuropathological process. Ann. Neurol. 1988;24:574–576. doi: 10.1002/ana.410240415. [DOI] [PubMed] [Google Scholar]
  237. Medvedev ZA. On the immortality of the germ line: genetic and biochemical mechanism. A review. Mech. Ageing Dev. 1981;17:331–359. doi: 10.1016/0047-6374(81)90052-x. [DOI] [PubMed] [Google Scholar]
  238. Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl Acad. Sci. USA. 2006;103:12517–12522. doi: 10.1073/pnas.0601891103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Miller RA. Kleemeier award lecture: are there genes for aging? J. Gerontol. A Biol. Sci. Med. Sci. 1999;54:B297–B307. doi: 10.1093/gerona/54.7.b297. [DOI] [PubMed] [Google Scholar]
  240. Miller J, Sanders E, Webb D. Plasmapheresis for paraquat poisoning. Lancet. 1978;1:875–876. doi: 10.1016/s0140-6736(78)90217-9. [DOI] [PubMed] [Google Scholar]
  241. Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson's disease. Exp. Neurol. 1999;156:138–148. doi: 10.1006/exnr.1998.7008. [DOI] [PubMed] [Google Scholar]
  242. Miquel J, Economos AC, Fleming J, Johnson JE., Jr Mitochondrial role in cell aging. Exp. Gerontol. 1980;15:575–591. doi: 10.1016/0531-5565(80)90010-8. [DOI] [PubMed] [Google Scholar]
  243. Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience. 2000;95:425–432. doi: 10.1016/s0306-4522(99)00455-8. [DOI] [PubMed] [Google Scholar]
  244. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 2005;28:57–87. doi: 10.1146/annurev.neuro.28.061604.135718. [DOI] [PubMed] [Google Scholar]
  246. Mor F, Quintana F, Mimran A, Cohen IR. Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. J. Immunol. 2003;170:628–634. doi: 10.4049/jimmunol.170.1.628. [DOI] [PubMed] [Google Scholar]
  247. Morales I, Rodriguez M. Self-induced accumulation of glutamate in striatal astrocytes and basal ganglia excitotoxicity. Glia. 2012;60:1481–1494. doi: 10.1002/glia.22368. [DOI] [PubMed] [Google Scholar]
  248. Morales I, Sabate M, Rodriguez M. Striatal glutamate induces retrograde excitotoxicity and neuronal degeneration of intralaminar thalamic nuclei: their potential relevance for Parkinson's disease. Eur. J. Neurosci. 2013a;38:2172–2182. doi: 10.1111/ejn.12205. [DOI] [PubMed] [Google Scholar]
  249. Morales I, Yanos C, Rodriguez-Sabate C, Sanchez A, Rodriguez M. Striatal glutamate degenerates thalamic neurons. J. Neuropathol. Exp. Neurol. 2013b;72:286–297. doi: 10.1097/NEN.0b013e31828a80ee. [DOI] [PubMed] [Google Scholar]
  250. Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, Llinas RR, Brady ST. 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc. Natl Acad. Sci. USA. 2007;104:2442–2447. doi: 10.1073/pnas.0611231104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Morgan DG, Marcusson JO, Nyberg P, Wester P, Winblad B, Gordon MN, Finch CE. Divergent changes in D-1 and D-2 dopamine binding sites in human brain during aging. Neurobiol. Aging. 1987;8:195–201. doi: 10.1016/0197-4580(87)90002-9. [DOI] [PubMed] [Google Scholar]
  252. Mortera P, Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front. Neuroanat. 2012;6:45. doi: 10.3389/fnana.2012.00045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J. Neurosci. 2007;27:3328–3337. doi: 10.1523/JNEUROSCI.5321-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Mouradian MM. MicroRNAs in Parkinson's disease. Neurobiol. Dis. 2012;46:279–284. doi: 10.1016/j.nbd.2011.12.046. [DOI] [PubMed] [Google Scholar]
  255. Mozley PD, Acton PD, Barraclough ED, Plossl K, Gur RC, Alavi A, Mathur A, Saffer J, Kung HF. Effects of age on dopamine transporters in healthy humans. J. Nucl. Med. 1999;40:1812–1817. [PubMed] [Google Scholar]
  256. Muftuoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G, Ogus H, Dalkara T, Ozer N. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 2004;19:544–548. doi: 10.1002/mds.10695. [DOI] [PubMed] [Google Scholar]
  257. Muller CM, de Vos RA, Maurage CA, Thal DR, Tolnay M, Braak H. Staging of sporadic Parkinson disease-related alpha-synuclein pathology: inter- and intra-rater reliability. J. Neuropathol. Exp. Neurol. 2005;64:623–628. doi: 10.1097/01.jnen.0000171652.40083.15. [DOI] [PubMed] [Google Scholar]
  258. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic. Biol. Med. 2007;43:477–503. doi: 10.1016/j.freeradbiomed.2007.03.034. [DOI] [PubMed] [Google Scholar]
  259. Muller-Hocker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. Am. J. Pathol. 1989;134:1167–1173. [PMC free article] [PubMed] [Google Scholar]
  260. Muller-Hocker J. Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J. Neurol. Sci. 1990;100:14–21. doi: 10.1016/0022-510x(90)90006-9. [DOI] [PubMed] [Google Scholar]
  261. Murphy MP. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Nagelhus EA, Amiry-Moghaddam M, Bergersen LH, Bjaalie JG, Eriksson J, Gundersen V, Leergaard TB, Morth JP, Storm-Mathisen J, Torp R, Walhovd KB, Tonjum T. The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mech. Ageing Dev. 2013;134:449–459. doi: 10.1016/j.mad.2013.10.001. [DOI] [PubMed] [Google Scholar]
  263. Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K. Oxidative damage in nucleic acids and Parkinson's disease. J. Neurosci. Res. 2007;85:919–934. doi: 10.1002/jnr.21191. [DOI] [PubMed] [Google Scholar]
  264. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298. doi: 10.1371/journal.pbio.1000298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Neukomm LJ, Freeman MR. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 2014;24:515–523. doi: 10.1016/j.tcb.2014.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Nguyen D, Alavi MV, Kim KY, Kang T, Scott RT, Noh YH, Lindsey JD, Wissinger B, Ellisman MH, Weinreb RN, Perkins GA, Ju WK. A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis. 2011;2:e240. doi: 10.1038/cddis.2011.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–1318. doi: 10.1126/science.1110647. [DOI] [PubMed] [Google Scholar]
  268. Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging. 2012;33:195e1–195e12. doi: 10.1016/j.neurobiolaging.2010.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Numao A, Suzuki K, Miyamoto M, Miyamoto T, Hirata K. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat. Disord. 2014;20:212–216. doi: 10.1016/j.parkreldis.2013.11.005. [DOI] [PubMed] [Google Scholar]
  270. Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets. 2007;6:411–423. doi: 10.2174/187152707783399201. [DOI] [PubMed] [Google Scholar]
  271. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G. Missing pieces in the Parkinson's disease puzzle. Nat. Med. 2010;16:653–661. doi: 10.1038/nm.2165. [DOI] [PubMed] [Google Scholar]
  272. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem. Pharmacol. 2007;73:550–560. doi: 10.1016/j.bcp.2006.11.003. [DOI] [PubMed] [Google Scholar]
  273. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 1999;22:123–144. doi: 10.1146/annurev.neuro.22.1.123. [DOI] [PubMed] [Google Scholar]
  274. Oliveira BF, Nogueira-Machado JA, Chaves MM. The role of oxidative stress in the aging process. ScientificWorldJournal. 2010;10:1121–1128. doi: 10.1100/tsw.2010.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, Albertini MC, Graciotti L, Babini L, Mariotti S, Spada G, Abbatecola AM, Antonicelli R, Franceschi C, Procopio AD. MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age. 2012;35:1157–1172. doi: 10.1007/s11357-012-9440-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Olson CB. A review of why and how we age: a defense of multifactorial aging. Mech. Ageing Dev. 1987;41:1–28. doi: 10.1016/0047-6374(87)90050-9. [DOI] [PubMed] [Google Scholar]
  277. Orimo S, Uchihara T, Kanazawa T, Itoh Y, Wakabayashi K, Kakita A, Takahashi H. Unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve in Parkinson's disease. Neuropathol. Appl. Neurobiol. 2011;37:791–802. doi: 10.1111/j.1365-2990.2011.01194.x. [DOI] [PubMed] [Google Scholar]
  278. Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson's disease. Brain. 2005;128:2665–2674. doi: 10.1093/brain/awh625. [DOI] [PubMed] [Google Scholar]
  279. Orth M, Schapira AH. Mitochondrial involvement in Parkinson's disease. Neurochem. Int. 2002;40:533–541. doi: 10.1016/s0197-0186(01)00124-3. [DOI] [PubMed] [Google Scholar]
  280. Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 2003;12:1945–1958. doi: 10.1093/hmg/ddg211. [DOI] [PubMed] [Google Scholar]
  281. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 2005;57:168–175. doi: 10.1002/ana.20338. [DOI] [PubMed] [Google Scholar]
  282. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science. 2007;317:516–519. doi: 10.1126/science.1143780. [DOI] [PubMed] [Google Scholar]
  283. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 2004;279:18614–18622. doi: 10.1074/jbc.M401135200. [DOI] [PubMed] [Google Scholar]
  284. Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front. Genet. 2012;3:297. doi: 10.3389/fgene.2012.00297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Pallas M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I, Camins A. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience. 2008;154:1388–1397. doi: 10.1016/j.neuroscience.2008.04.065. [DOI] [PubMed] [Google Scholar]
  286. Paolini M, Sapone A, Gonzalez FJ. Parkinson's disease, pesticides and individual vulnerability. Trends Pharmacol. Sci. 2004;25:124–129. doi: 10.1016/j.tips.2004.01.007. [DOI] [PubMed] [Google Scholar]
  287. Parker WD, Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 1989;26:719–723. doi: 10.1002/ana.410260606. [DOI] [PubMed] [Google Scholar]
  288. Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson's disease in mice. Neuroscience. 2014;277:747–754. doi: 10.1016/j.neuroscience.2014.07.046. [DOI] [PubMed] [Google Scholar]
  289. Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson's disease. J. Neuropathol. Exp. Neurol. 1991;50:743–755. doi: 10.1097/00005072-199111000-00006. [DOI] [PubMed] [Google Scholar]
  290. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. J. Neural. Transm. 1997;104:661–677. doi: 10.1007/BF01291884. [DOI] [PubMed] [Google Scholar]
  291. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl Acad. Sci. USA. 2009;106:3059–3064. doi: 10.1073/pnas.0809620106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R. Astrocytes aged in vitro show a decreased neuroprotective capacity. J. Neurochem. 2007;101:794–805. doi: 10.1111/j.1471-4159.2006.04369.x. [DOI] [PubMed] [Google Scholar]
  293. Peto R, Doll R. There is no such thing as aging. BMJ. 1997;315:1030–1032. doi: 10.1136/bmj.315.7115.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Pfeiffer RF. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2003;2:107–116. doi: 10.1016/s1474-4422(03)00307-7. [DOI] [PubMed] [Google Scholar]
  295. Pfeiffer RF. Gastrointestinal, urological, and sexual dysfunction in Parkinson's disease. Mov. Disord. 2010;25(Suppl 1):S94–S97. doi: 10.1002/mds.22715. [DOI] [PubMed] [Google Scholar]
  296. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, Neumeister A, Praschak-Rieder N, Angelberger P, Brucke T. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J. Nucl. Med. 2000;41:36–44. [PubMed] [Google Scholar]
  297. Prinzinger R. Programmed ageing: the theory of maximal metabolic scope. How does the biological clock tick? EMBO Rep. 2005;6:S14–S19. doi: 10.1038/sj.embor.7400425. Spec No, [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15:590–595. doi: 10.1089/rej.2012.1349. [DOI] [PubMed] [Google Scholar]
  299. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Brain Res. Rev. 1999;30:77–105. doi: 10.1016/s0165-0173(99)00007-7. [DOI] [PubMed] [Google Scholar]
  300. Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP. Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem. 1991;56:1184–1190. doi: 10.1111/j.1471-4159.1991.tb11409.x. [DOI] [PubMed] [Google Scholar]
  301. Ransmayr G, Faucheux B, Nowakowski C, Kubis N, Federspiel S, Kaufmann W, Henin D, Hauw JJ, Agid Y, Hirsch EC. Age-related changes of neuronal counts in the human pedunculopontine nucleus. Neurosci. Lett. 2000;288:195–198. doi: 10.1016/s0304-3940(00)01244-1. [DOI] [PubMed] [Google Scholar]
  302. Raule N, Sevini F, Li S, Barbieri A, Tallaro F, Lomartire L, Vianello D, Montesanto A, Moilanen JS, Bezrukov V, Blanche H, Hervonen A, Christensen K, Deiana L, Gonos ES, Kirkwood TB, Kristensen P, Leon A, Pelicci PG, Poulain M, Rea IM, Remacle J, Robine JM, Schreiber S, Sikora E, Eline Slagboom P, Spazzafumo L, Antonietta Stazi M, Toussaint O, Vaupel JW, Rose G, Majamaa K, Perola M, Johnson TE, Bolund L, Yang H, Passarino G, Franceschi C. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell. 2013;13:401–407. doi: 10.1111/acel.12186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res. Brain Res. Rev. 2005;49:618–632. doi: 10.1016/j.brainresrev.2005.03.004. [DOI] [PubMed] [Google Scholar]
  304. Reeve A, Meagher M, Lax N, Simcox E, Hepplewhite P, Jaros E, Turnbull D. The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. J. Neurosci. 2013;33:10790–10801. doi: 10.1523/JNEUROSCI.3525-12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing Res. Rev. 2014;14:19–30. doi: 10.1016/j.arr.2014.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience. 1998;82:1213–1223. doi: 10.1016/s0306-4522(97)00347-3. [DOI] [PubMed] [Google Scholar]
  307. Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat. Res. 1992;275:249–255. doi: 10.1016/0921-8734(92)90029-o. [DOI] [PubMed] [Google Scholar]
  308. Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson's disease. A detailed study of influential factors in human brain amine analysis. J. Neural. Transm. 1976;38:277–301. doi: 10.1007/BF01249445. [DOI] [PubMed] [Google Scholar]
  309. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 1989;52:515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. [DOI] [PubMed] [Google Scholar]
  310. Robinson DS, Sourkes TL, Nies A, Harris LS, Spector S, Bartlett DL, Kaye IS. Monoamine metabolism in human brain. Arch. Gen. Psychiatry. 1977;34:89–92. doi: 10.1001/archpsyc.1977.01770130091009. [DOI] [PubMed] [Google Scholar]
  311. Rodriguez M, Castro R. Apomorphine lowers dopamine synthesis for up to 48 h: implications for drug sensitization. NeuroReport. 1991;2:365–368. doi: 10.1097/00001756-199107000-00002. [DOI] [PubMed] [Google Scholar]
  312. Rodriguez Diaz M, Abdala P, Barroso-Chinea P, Obeso J, Gonzalez-Hernandez T. Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson's disease. Behav. Brain Res. 2001;122:79–92. doi: 10.1016/s0166-4328(01)00168-1. [DOI] [PubMed] [Google Scholar]
  313. Rodriguez M, Gonzalez-Hernandez T. Electrophysiological and morphological evidence for a GABAergic nigrostriatal pathway. J. Neurosci. 1999;19:4682–4694. doi: 10.1523/JNEUROSCI.19-11-04682.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Rodriguez M, Barroso-Chinea P, Abdala P, Obeso J, Gonzalez-Hernandez T. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson's disease. Exp. Neurol. 2001;169:163–181. doi: 10.1006/exnr.2000.7624. [DOI] [PubMed] [Google Scholar]
  315. Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I. The role of non-synaptic extracellular glutamate. Brain Res. Bull. 2012;93:17–26. doi: 10.1016/j.brainresbull.2012.09.018. [DOI] [PubMed] [Google Scholar]
  316. Rodriguez-Navarro JA, Casarejos MJ, Menendez J, Solano RM, Rodal I, Gomez A, Yebenes JG, Mena MA. Mortality, oxidative stress and tau accumulation during ageing in parkin null mice. J. Neurochem. 2007;103:98–114. doi: 10.1111/j.1471-4159.2007.04762.x. [DOI] [PubMed] [Google Scholar]
  317. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? Int. Rev. Neurobiol. 2007;82:235–246. doi: 10.1016/S0074-7742(07)82012-5. [DOI] [PubMed] [Google Scholar]
  318. Rudow G, O'Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, Marsh L, Dawson TM, Crain BJ, West MJ, Troncoso JC. Morphometry of the human substantia nigra in ageing and Parkinson's disease. Acta Neuropathol. 2008;115:461–470. doi: 10.1007/s00401-008-0352-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP. Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol. Dis. 2006;23:533–542. doi: 10.1016/j.nbd.2006.04.008. [DOI] [PubMed] [Google Scholar]
  320. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Patel B, Giralt A, Canals JM, Memo M, Alberch J, Lopez-Barneo J, Vila M, Cuervo AM, Tolosa E, Consiglio A, Raya A. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol. Med. 2012;4:380–395. doi: 10.1002/emmm.201200215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  321. Sasaki S, Warita H, Abe K, Iwata M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005;110:48–56. doi: 10.1007/s00401-005-1021-9. [DOI] [PubMed] [Google Scholar]
  322. Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N. Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol. Aging. 1997;18:497–507. doi: 10.1016/s0197-4580(97)00113-9. [DOI] [PubMed] [Google Scholar]
  323. Seidler A, Hellenbrand W, Robra BP, Vieregge P, Nischan P, Joerg J, Oertel WH, Ulm G, Schneider E. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany. Neurology. 1996;46:1275–1284. doi: 10.1212/wnl.46.5.1275. [DOI] [PubMed] [Google Scholar]
  324. Sellbach AN, Boyle RS, Silburn PA, Mellick GD. Parkinson's disease and family history. Parkinsonism Relat. Disord. 2006;12:399–409. doi: 10.1016/j.parkreldis.2006.03.002. [DOI] [PubMed] [Google Scholar]
  325. Semchuk KM, Love EJ, Lee RG. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology. 1992;42:1328–1335. doi: 10.1212/wnl.42.7.1328. [DOI] [PubMed] [Google Scholar]
  326. Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci. Lett. 2009;459:100–104. doi: 10.1016/j.neulet.2009.04.052. [DOI] [PubMed] [Google Scholar]
  327. Shapira E, Ratzon R, Shoham-Vardi I, Serjienko R, Mazor M, Bashiri A. Primary vs. secondary recurrent pregnancy loss–epidemiological characteristics, etiology, and next pregnancy outcome. J. Perinat. Med. 2002;40:389–396. doi: 10.1515/jpm-2011-0315. [DOI] [PubMed] [Google Scholar]
  328. Shibata E, Sasaki M, Tohyama K, Kanbara Y, Otsuka K, Ehara S, Sakai A. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn. Reson. Med. Sci. 2006;5:197–200. doi: 10.2463/mrms.5.197. [DOI] [PubMed] [Google Scholar]
  329. Shimada A, Hasegawa-Ishii S. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence. Aging Dis. 2011;2:414–435. [PMC free article] [PubMed] [Google Scholar]
  330. Shook BA, Manz DH, Peters JJ, Kang S, Conover JC. Spatiotemporal changes to the subventricular zone stem cell pool through aging. J. Neurosci. 2012;32:6947–6956. doi: 10.1523/JNEUROSCI.5987-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 1994;36:348–355. doi: 10.1002/ana.410360305. [DOI] [PubMed] [Google Scholar]
  332. Sinclair DA, Oberdoerffer P. The ageing epigenome: damaged beyond repair? Ageing Res. Rev. 2009;8:189–198. doi: 10.1016/j.arr.2009.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res. 2005;8:172–198. doi: 10.1089/rej.2005.8.172. [DOI] [PubMed] [Google Scholar]
  334. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Sohal RS, Brunk UT. Mitochondrial production of pro-oxidants and cellular senescence. Mutat. Res. 1992;275:295–304. doi: 10.1016/0921-8734(92)90033-l. [DOI] [PubMed] [Google Scholar]
  336. Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012;52:539–555. doi: 10.1016/j.freeradbiomed.2011.10.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Song YJ, Halliday GM, Holton JL, Lashley T, O'Sullivan SS, McCann H, Lees AJ, Ozawa T, Williams DR, Lockhart PJ, Revesz TR. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J. Neuropathol. Exp. Neurol. 2009;68:1073–1083. doi: 10.1097/NEN.0b013e3181b66f1b. [DOI] [PubMed] [Google Scholar]
  339. Sossi V, de La Fuente-Fernandez R, Holden JE, Doudet DJ, McKenzie J, Stoessl AJ, Ruth TJ. Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18F-fluorodopa data. J. Cereb. Blood Flow Metab. 2002;22:232–239. doi: 10.1097/00004647-200202000-00011. [DOI] [PubMed] [Google Scholar]
  340. Srivastava S, Haigis MC. Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer's and Parkinson's diseases. Curr. Pharm. Des. 2011;17:3418–3433. doi: 10.2174/138161211798072526. [DOI] [PubMed] [Google Scholar]
  341. Stark AK, Pakkenberg B. Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res. 2004;318:81–92. doi: 10.1007/s00441-004-0972-9. [DOI] [PubMed] [Google Scholar]
  342. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 2001;21:9549–9560. doi: 10.1523/JNEUROSCI.21-24-09549.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Sterky FH, Lee S, Wibom R, Olson L, Larsson NG. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA. 2011;108:12937–12942. doi: 10.1073/pnas.1103295108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002;40:133–139. doi: 10.1002/glia.10154. [DOI] [PubMed] [Google Scholar]
  345. Streit WJ, Graeber MB, Kreutzberg GW. Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp. Neurol. 1989;105:115–126. doi: 10.1016/0014-4886(89)90111-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Streit WJ, Miller KR, Lopes KO, Njie E. Microglial degeneration in the aging brain–bad news for neurons? Front Biosci. 2008;13:3423–3438. doi: 10.2741/2937. [DOI] [PubMed] [Google Scholar]
  347. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog. Neurobiol. 2013;106-107:17–32. doi: 10.1016/j.pneurobio.2013.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y. Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology. 1991;103:41–45. doi: 10.1007/BF02244071. [DOI] [PubMed] [Google Scholar]
  349. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Jr, Davis RE, Parker WD., Jr Origin and functional consequences of the complex I defect in Parkinson's disease. Ann. Neurol. 1996;40:663–671. doi: 10.1002/ana.410400417. [DOI] [PubMed] [Google Scholar]
  350. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhaes JP. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 2012;41:D1027–D1033. doi: 10.1093/nar/gks1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. [DOI] [PubMed] [Google Scholar]
  352. Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem. Res. 2009;34:639–659. doi: 10.1007/s11064-009-9922-y. [DOI] [PubMed] [Google Scholar]
  353. Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M, Oshimura M, Nakamura K. Telomere lengths are characteristic in each human individual. Exp. Gerontol. 2002;37:523–531. doi: 10.1016/s0531-5565(01)00218-2. [DOI] [PubMed] [Google Scholar]
  354. Tanner CM. The role of environmental toxins in the etiology of Parkinson's disease. Trends Neurosci. 1989;12:49–54. doi: 10.1016/0166-2236(89)90135-5. [DOI] [PubMed] [Google Scholar]
  355. Tate EL, Herbener GH. A morphometric study of the density of mitochondrial cristae in heart and liver of aging mice. J. Gerontol. 1976;31:129–134. doi: 10.1093/geronj/31.2.129. [DOI] [PubMed] [Google Scholar]
  356. Tedroff J, Aquilonius SM, Hartvig P, Lundqvist H, Gee AG, Uhlin J, Langstrom B. Monoamine re-uptake sites in the human brain evaluated in vivo by means of 11C-nomifensine and positron emission tomography: the effects of age and Parkinson's disease. Acta Neurol. Scand. 1988;77:192–201. doi: 10.1111/j.1600-0404.1988.tb05894.x. [DOI] [PubMed] [Google Scholar]
  357. Toussaint O, Dumont P, Dierick JF, Pascal T, Frippiat C, Chainiaux F, Sluse F, Eliaers F, Remacle J. Stress-induced premature senescence. Essence of life, evolution, stress, and aging. Ann. N. Y. Acad. Sci. 2000;908:85–98. doi: 10.1111/j.1749-6632.2000.tb06638.x. [DOI] [PubMed] [Google Scholar]
  358. Ungerstedt U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 1971;367:95–122. doi: 10.1111/j.1365-201x.1971.tb11001.x. [DOI] [PubMed] [Google Scholar]
  359. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004a;304:1158–1160. doi: 10.1126/science.1096284. [DOI] [PubMed] [Google Scholar]
  360. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio AR. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 2004b;56:336–341. doi: 10.1002/ana.20256. [DOI] [PubMed] [Google Scholar]
  361. Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B, Vandenberghe W. Parkin interacts with Ambra1 to induce mitophagy. J. Neurosci. 2011;31:10249–10261. doi: 10.1523/JNEUROSCI.1917-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  362. Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB. Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology. 2005;64:728–730. doi: 10.1212/01.WNL.0000152046.11390.45. [DOI] [PubMed] [Google Scholar]
  363. Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson's disease. Neurochem. Res. 2012;37:358–369. doi: 10.1007/s11064-011-0619-7. [DOI] [PubMed] [Google Scholar]
  364. Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, Loeb LA. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 2007;39:540–543. doi: 10.1038/ng1988. [DOI] [PubMed] [Google Scholar]
  365. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl Acad. Sci. USA. 2013;110:6400–6405. doi: 10.1073/pnas.1221132110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  366. Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding YS, Dewey S. PET evaluation of the dopamine system of the human brain. J. Nucl. Med. 1996;37:1242–1256. [PubMed] [Google Scholar]
  367. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains. Acta Neuropathol. 2000;99:14–20. doi: 10.1007/pl00007400. [DOI] [PubMed] [Google Scholar]
  368. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 2009;29:3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Wang D, Kreutzer DA, Essigmann JM. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 1998a;400:99–115. doi: 10.1016/s0027-5107(98)00066-9. [DOI] [PubMed] [Google Scholar]
  370. Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ. Age-dependent decline of dopamine D1 receptors in human brain: a PET study. Synapse. 1998b;30:56–61. doi: 10.1002/(SICI)1098-2396(199809)30:1<56::AID-SYN7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  371. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A. PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J. Biol. Chem. 2009;284:21379–21385. doi: 10.1074/jbc.M109.018911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  372. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 2003;278:25009–25013. doi: 10.1074/jbc.M300227200. [DOI] [PubMed] [Google Scholar]
  373. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009;48:2045–2052. doi: 10.1021/bi8019178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Weisskopf MG, Knekt P, O'Reilly EJ, Lyytinen J, Reunanen A, Laden F, Altshul L, Ascherio A. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology. 2010;74:1055–1061. doi: 10.1212/WNL.0b013e3181d76a93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  375. Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson's disease. Proteome Sci. 2008;6:8. doi: 10.1186/1477-5956-6-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  376. Wilson PD, Franks LM. The effect of age on mitochondrial ultrastructure. Gerontologia. 1975;21:81–94. doi: 10.1159/000212035. [DOI] [PubMed] [Google Scholar]
  377. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur. J. Epidemiol. 2011;26(Suppl 1):S1–S58. doi: 10.1007/s10654-011-9581-6. [DOI] [PubMed] [Google Scholar]
  378. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010;13:805–811. doi: 10.1038/nn.2575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Wood-Kaczmar A, Gandhi S, Yao Z, Abramov AY, Miljan EA, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen MR, Latchman D, Tabrizi SJ, Wood NW. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE. 2008;3:e2455. doi: 10.1371/journal.pone.0002455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  380. Yang ML, Hasadsri L, Woods WS, George JM. Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. Mol. Neurodegener. 2010;5:9. doi: 10.1186/1750-1326-5-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  381. Yen WL, Klionsky DJ. How to live long and prosper: autophagy, mitochondria, and aging. Physiology. 2008;23:248–262. doi: 10.1152/physiol.00013.2008. [DOI] [PubMed] [Google Scholar]
  382. Yu BP. Aging and oxidative stress: modulation by dietary restriction. Free Radic. Biol. Med. 1996;21:651–668. doi: 10.1016/0891-5849(96)00162-1. [DOI] [PubMed] [Google Scholar]
  383. Yu BP, Yang R. Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesi. Ann. N. Y. Acad. Sci. 1996;786:1–11. doi: 10.1111/j.1749-6632.1996.tb39047.x. [DOI] [PubMed] [Google Scholar]
  384. Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson's disease: is this the elephant in the room? Biomed. Pharmacother. 2008;62:236–249. doi: 10.1016/j.biopha.2008.01.017. [DOI] [PubMed] [Google Scholar]
  385. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. Faseb J. 2005;19:533–542. doi: 10.1096/fj.04-2751com. [DOI] [PubMed] [Google Scholar]
  386. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J. Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol. 2011;95:373–395. doi: 10.1016/j.pneurobio.2011.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  387. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 2010;299:E110–E116. doi: 10.1152/ajpendo.00192.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL. The pedunculopontine nucleus in Parkinson's disease. Ann. Neurol. 1989;26:41–46. doi: 10.1002/ana.410260106. [DOI] [PubMed] [Google Scholar]

Articles from Aging Cell are provided here courtesy of Wiley

RESOURCES