Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Sep;66(3):534–535. doi: 10.1104/pp.66.3.534

Phytochrome Modifies Blue-light-induced Electrical Changes in Corn Coleoptiles 1

Richard H Racusen 1,2, Arthur W Galston 1,3
PMCID: PMC440669  PMID: 16661471

Abstract

Unilateral blue light administered to corn coleoptile segments produces no alteration of transmembrane potential on the light side, and only a small and slow hyperpolarization on the dark side. Red light causes a 5-15 millivolt depolarization in cells on the light side causes and somewhat smaller effects on the dark side. Blue given after red causes a rapid hyperpolarization on both sides of the coleoptile. The effect of the potentiating red preirradiation is probably due to phytochrome, being largely abolished by far-red given after red, but before the blue light. The effect of prior red irradiation decays in the dark, showing a half-time of about 45 minutes at room temperature. This rapid cooperativity between phytochrome and the phototropic pigment may indicate a common locale, possibly in a membrane.

Full text

PDF
534

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asomaning E. J., Galston A. W. Comparative study of phototropic response & pigment content in oat & barley coleoptiles. Plant Physiol. 1961 Jul;36(4):453–464. doi: 10.1104/pp.36.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Briggs W. R., Chon H. P. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol. 1966 Sep;41(7):1159–1166. doi: 10.1104/pp.41.7.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleland R. E., Prins H. B., Harper J. R., Higinbotham N. Rapid Hormone-induced Hyperpolarization of the Oat Coleoptile Transmembrane Potential. Plant Physiol. 1977 Mar;59(3):395–397. doi: 10.1104/pp.59.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Higinbotham N., Etherton B., Foster R. J. Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 1967 Jan;42(1):37–46. doi: 10.1104/pp.42.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kang B. G., Burg S. P. Red light enhancement of the phototropic response of etiolated pea stems. Plant Physiol. 1974 Mar;53(3):445–448. doi: 10.1104/pp.53.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES