Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Oct;66(4):672–678. doi: 10.1104/pp.66.4.672

Changes in the Levels of Abscisic Acid and Its Metabolites in Excised Leaf Blades of Xanthium strumarium during and after Water Stress 1

Jan A D Zeevaart 1
PMCID: PMC440701  PMID: 16661500

Abstract

The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a μBondapak-NH2 column, and quantified by GLC with an electron capture detector.

The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse.

Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible.

Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness, responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period.

Full text

PDF
672

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beardsell M. F., Cohen D. Relationships between Leaf Water Status, Abscisic Acid Levels, and Stomatal Resistance in Maize and Sorghum. Plant Physiol. 1975 Aug;56(2):207–212. doi: 10.1104/pp.56.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ciha A. J., Brenner M. L., Brun W. A. Rapid separation and quantification of abscisic Acid from plant tissues using high performance liquid chromatography. Plant Physiol. 1977 May;59(5):821–826. doi: 10.1104/pp.59.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harrison M. A., Walton D. C. Abscisic Acid Metabolism in Water-stressed Bean Leaves. Plant Physiol. 1975 Aug;56(2):250–254. doi: 10.1104/pp.56.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hsu F. C. Abscisic Acid Accumulation in Developing Seeds of Phaseolus vulgaris L. Plant Physiol. 1979 Mar;63(3):552–556. doi: 10.1104/pp.63.3.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jones M. G., Metzger J. D., Zeevaart J. A. Fractionation of gibberellins in plant extracts by reverse phase high performance liquid chromatography. Plant Physiol. 1980 Feb;65(2):218–221. doi: 10.1104/pp.65.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Quebedeaux B., Sweetser P. B., Rowell J. C. Abscisic Acid Levels in Soybean Reproductive Structures during Development. Plant Physiol. 1976 Sep;58(3):363–366. doi: 10.1104/pp.58.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Raschke K., Zeevaart J. A. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. Plant Physiol. 1976 Aug;58(2):169–174. doi: 10.1104/pp.58.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sharkey T. D., Raschke K. Effects of phaseic Acid and dihydrophaseic Acid on stomata and the photosynthetic apparatus. Plant Physiol. 1980 Feb;65(2):291–297. doi: 10.1104/pp.65.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sweetser P. B., Vatvars A. High-performance liquid chromatographic analysis of abscisic acid in plant extracts. Anal Biochem. 1976 Mar;71(1):68–78. doi: 10.1016/0003-2697(76)90012-9. [DOI] [PubMed] [Google Scholar]
  10. Zeevaart J. A. Sites of Abscisic Acid Synthesis and Metabolism in Ricinus communis L. Plant Physiol. 1977 May;59(5):788–791. doi: 10.1104/pp.59.5.788. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES