Abstract
The use of the relative ureide content of xylem sap [(ureide-N/total N) × 100] as an indicator of N2 fixation in soybeans (Merr.) was examined under greenhouse conditions. Acetylene treatments to inhibit N2 fixation were imposed upon the root systems of plants totally dependent upon N2 fixation as their source of N and of plants dependent upon both N2 fixation and uptake of exogenous nitrate. Significant decreases in the total N concentration of xylem sap from plants of the former type were observed, but no significant decrease was observed in the total N concentration of sap from the latter type of plants. In both types of plants, acetylene treatment caused significant decreases in the relative ureide content of xylem sap. The results provided further support for a link between the presence of ureides in the xylem and the occurrence of N2 fixation in soybeans. The relative ureide content of xylem sap from plants totally dependent upon N2 fixation was shown to be insensitive to changes in the exudation rate and total N concentration of xylem sap brought about by diurnal changes in environmental factors. There was little evidence of soybean cultivars or nodulating strains affecting the relative ureide content of xylem sap. `Ransom' soybeans nodulated with Rhizobium japonicum strain USDA 110 were grown under conditions to obtain plants exhibiting a wide range of dependency upon N2 fixation. The relative ureide content of xylem sap was shown to indicate reliably the N2 fixation of these plants during vegetative growth using a 15N method to measure N2 fixation activity. The use of the relative ureide content of xylem sap for quantification of N2 fixation in soybeans should be evaluated further.
Full text
PDF![720](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/b9372600cf45/plntphys00527-0190.png)
![721](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/f905c831d133/plntphys00527-0191.png)
![722](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/48de097cf0ae/plntphys00527-0192.png)
![723](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/cc424c7edaca/plntphys00527-0193.png)
![724](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/28455985239f/plntphys00527-0194.png)
![725](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/440710/578d3e633315/plntphys00527-0195.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bethlenfalvay G. J., Phillips D. A. Effect of Light Intensity on Efficiency of Carbon Dioxide and Nitrogen Reduction in Pisum sativum L. Plant Physiol. 1977 Dec;60(6):868–871. doi: 10.1104/pp.60.6.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bethlenfalvay G. J., Phillips D. A. Ontogenetic Interactions between Photosynthesis and Symbiotic Nitrogen Fixation in Legumes. Plant Physiol. 1977 Sep;60(3):419–421. doi: 10.1104/pp.60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilworth M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta. 1966 Oct 31;127(2):285–294. doi: 10.1016/0304-4165(66)90383-7. [DOI] [PubMed] [Google Scholar]
- Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClure P. R., Israel D. W. Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 1979 Sep;64(3):411–416. doi: 10.1104/pp.64.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mederski H. J., Streeter J. G. Continuous, automated acetylene reduction assays using intact plants. Plant Physiol. 1977 Jun;59(6):1076–1081. doi: 10.1104/pp.59.6.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert K. R., Evans H. J. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1207–1211. doi: 10.1073/pnas.73.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöllhorn R., Burris R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proc Natl Acad Sci U S A. 1967 Jul;58(1):213–216. doi: 10.1073/pnas.58.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streeter J. G. Allantoin and Allantoic Acid in Tissues and Stem Exudate from Field-grown Soybean Plants. Plant Physiol. 1979 Mar;63(3):478–480. doi: 10.1104/pp.63.3.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volk R. J., Pearson C. J., Jackson W. A. Reduction of plant tissue nitrate to nitric oxide for mass spectrometric 15N analysis. Anal Biochem. 1979 Aug;97(1):131–135. doi: 10.1016/0003-2697(79)90336-1. [DOI] [PubMed] [Google Scholar]