Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Dec;66(6):1123–1127. doi: 10.1104/pp.66.6.1123

Hormonal Regulation of Lateral Bud (Tiller) Release in Oats (Avena sativa L.) 1

Marcia A Harrison 1,2, Peter B Kaufman 1,2
PMCID: PMC440802  PMID: 16661589

Abstract

Stem segments containing a single node and quiescent lateral bud (tiller) were excised from the bases of oat shoots (cv. `Victory') and used to study the effects of plant hormones on release of lateral buds and development of adventitious root primordia. Kinetin (10−5 and 10−6 molar) stimulates development of tillers and inhibits development of root primordia, whereas indoleacetic acid (IAA) (10−5 and 10−6 molar) causes the reverse effects. Abscisic acid strongly inhibits kinetin-induced tiller bud release and elon-gation and IAA-induced adventitious root development. IAA, in combination with kinetin, also inhibits kinetin-induced bud prophyll (outermost leaf of the axillary bud) elongation. The IAA oxidase cofactor p-coumaric acid stimulates lateral bud release; the auxin transport inhibitor 2,3,5-triiodo-benzoic acid and the antiauxin α (p-chlorophenoxy)-isobutyric acid inhibit IAA-induced adventitious root formation. Gibberellic acid is synergistic with kinetin in the elongation of the bud prophyll. In intact oat plants, tiller release is induced by shoot decapitation, geostimulation, or the emergence of the inflorescence. Results shown support the apical dominance theory, namely, that the cytokinin to auxin ratio plays a decisive role in determining whether tillers are released or adventitious roots develop. They also indicate that abscisic acid and possibly gibberellin may act as modulator hormones in this system.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aung L. H. Hormones and young leaves control development of cotyledonary buds in tomato seedlings. Plant Physiol. 1978 Aug;62(2):276–279. doi: 10.1104/pp.62.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kaufman P. B., Ghosheh N. S., Nakosteen L. Analysis of native gibberellins in the internode, nodes, leaves, and inflorescence of developing Avena plants. Plant Physiol. 1976 Aug;58(2):131–134. doi: 10.1104/pp.58.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. SKOOG F., MILLER C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130. [PubMed] [Google Scholar]
  4. de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES