Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Dec;66(6):1128–1134. doi: 10.1104/pp.66.6.1128

Structure of Plant Cell Walls

X. RHAMNOGALACTURONAN I, A STRUCTURALLY COMPLEX PECTIC POLYSACCHARIDE IN THE WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS 1

Michael McNeil 1, Alan G Darvill 1, Peter Albersheim 1,2
PMCID: PMC440803  PMID: 16661590

Abstract

The purification and characterization of a pectic polymer, rhamnogalacturonan I, present in the primary cell walls of dicots is described. Rhamnogalacturonan I accounts for approximately 7% of the mass of the walls isolated from suspension-cultured sycamore cells. As purified, rhamnogalacturonan I has a molecular weight of approximately 200,000 and is composed primarily of l-rhamnosyl, d-galacturonosyl, l-arabinosyl, and d-galactosyl residues. The backbone of rhamnogalacturonan I is thought to be composed predominantly of d-galacturonosyl and l-rhamnosyl residues in a ratio of approximately 2:1. About half of the l-rhamnosyl residues are 2-linked and are glycosidically attached to C4 of a d-galacturonosyl residue. The other half of the l-rhamnosyl residues are 2,4-linked and have a d-galacturonosyl residue glycosidically attached at C2. Sidechains averaging 6 residues in length are attached to C4 of the l-rhamnosyl residues. There are many different sidechains, containing variously linked l-arabinosyl, and/or d-galactosyl residues.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspinall G. O., Cottrell I. W., Egan S. V., Morrison I. M., Whyte J. N. Polysaccharides of soy-beans. IV. Partial hydrolysis of the acidic polysaccharide complex from cotyledon meal. J Chem Soc Perkin 1. 1967;11:1071–1080. doi: 10.1039/j39670001071. [DOI] [PubMed] [Google Scholar]
  2. Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  4. Darvill A. G., McNeil M., Albersheim P. Structure of Plant Cell Walls: VIII. A New Pectic Polysaccharide. Plant Physiol. 1978 Sep;62(3):418–422. doi: 10.1104/pp.62.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. English P. D., Maglothin A., Keegstra K., Albersheim P. A Cell Wall-degrading Endopolygalacturonase Secreted by Colletotrichum lindemuthianum. Plant Physiol. 1972 Mar;49(3):293–298. doi: 10.1104/pp.49.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  7. Keegstra K., Talmadge K. W., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: III. A Model of the Walls of Suspension-cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components. Plant Physiol. 1973 Jan;51(1):188–197. doi: 10.1104/pp.51.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Taylor R. L., Conrad H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry. 1972 Apr 11;11(8):1383–1388. doi: 10.1021/bi00758a009. [DOI] [PubMed] [Google Scholar]
  11. Valent B. S., Darvill A. G., McNeil M., Robertsen B. K., Albersheim P. A general and sensitive chemical method for sequencing the glycosyl residues of complex carbohydrates. Carbohydr Res. 1980 Mar;79(2):165–192. doi: 10.1016/s0008-6215(00)83830-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES