Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Dec;66(6):1155–1163. doi: 10.1104/pp.66.6.1155

Water-relation Parameters of Individual Mesophyll Cells of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana1

Ernst Steudle 1,2, J Andrew C Smith 1,2, Ulrich Lüttge 1,2
PMCID: PMC440808  PMID: 16661595

Abstract

Water-relation parameters of leaf mesophyll cells of the CAM plant Kalanchoë daigremontiana have been determined directly in cells of tissue slices using the pressure-probe technique. Turgor pressures measured in cells of the second to fourth layer from the cut surface showed an average of 1.82 ± 0.62 bar (mean ± sd; n = 157 cells). This was lower than expected from measurements of the osmotic pressure of the cell sap. The half-time (T1/2) for water-flux equilibration of individual cells was 2.5 to 8.8 seconds. This is the fastest T1/2 found so far for higher-plant cells. The calculated values of the hydraulic conductivity were in the range of 0.20 to 1.6 × 10−5 centimeters second−1 bar−1, with an average of (0.69 ± 0.46) × 10−5 centimeters second−1 bar−1 (mean ± sd; n = 8 cells). The T1/2 values of water exchange of individual cells are consistent with the overall rates of water-flux equilibration measured for tissue slices.

The volumetric elastic moduli (∈) of individual cells were in the range 13 to 128 bar for turgor pressures between 0.0 and 3.4 bar; the average ∈ value was 42.4 ± 27.7 bar (mean ± sd; n = 21 cells). This ∈ value is similar to that observed for other higher-plant cells.

The water-storage capacity of individual cells, calculated as Cc = V/(∈ + πi) (where V = cell volume and πi = internal osmotic pressure) was 9.1 × 10−9 cubic centimeters bar−1 per cell, and the capacity for the tissue was 2.2 × 10−2 cubic centimeters bar−1 gram−1 fresh weight. The significance of the water-relation parameters determined at the cellular level is discussed in terms of the water relations of whole leaves and the high water-use efficiency characteristic of CAM plants.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hanscom Z., Ting I. P. Responses of succulents to plant water stress. Plant Physiol. 1978 Mar;61(3):327–330. doi: 10.1104/pp.61.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hüsken D., Steudle E., Zimmermann U. Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol. 1978 Feb;61(2):158–163. doi: 10.1104/pp.61.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lüttge U., Ball E., Greenway H. Effects of Water and Turgor Potential on Malate Efflux from Leaf Slices of Kalanchoë daigremontiana. Plant Physiol. 1977 Oct;60(4):521–523. doi: 10.1104/pp.60.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lüttge U., Kluge M., Ball E. Effects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism. Plant Physiol. 1975 Nov;56(5):613–616. doi: 10.1104/pp.56.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nobel P. S. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti. Plant Physiol. 1976 Oct;58(4):576–582. doi: 10.1104/pp.58.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Philip J. R. Osmosis and Diffusion in Tissue: Half-times and Internal Gradients. Plant Physiol. 1958 Jul;33(4):275–278. doi: 10.1104/pp.33.4.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Steudle E., Zimmermann U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 1977 Feb;59(2):285–289. doi: 10.1104/pp.59.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Steudle E., Zimmermann U. Hydraulische Leitfähigkeit von Valonia utricularis. Z Naturforsch B. 1971 Dec;26(12):1302–1311. [PubMed] [Google Scholar]
  9. Szarek S. R., Johnson H. B., Ting I. P. Drought Adaptation in Opuntia basilaris: Significance of Recycling Carbon through Crassulacean Acid Metabolism. Plant Physiol. 1973 Dec;52(6):539–541. doi: 10.1104/pp.52.6.539. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES