Full text
PDF![701](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/67b2bdf3e1b0/bactrev00194-0002.png)
![702](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/5cc97a63b937/bactrev00194-0003.png)
![703](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/29bc868b566e/bactrev00194-0004.png)
![704](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/296b8874705a/bactrev00194-0005.png)
![705](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/9a946c6064ff/bactrev00194-0006.png)
![706](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/93c108adb0db/bactrev00194-0007.png)
![707](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/41021d5b39ec/bactrev00194-0008.png)
![708](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/83a557b59240/bactrev00194-0009.png)
![709](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/e987d0b2c528/bactrev00194-0010.png)
![710](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/cbadee8e5b42/bactrev00194-0011.png)
![711](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/1e79b3898d3f/bactrev00194-0012.png)
![712](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/09ddbcb9a6f7/bactrev00194-0013.png)
![713](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/ea8965c04da0/bactrev00194-0014.png)
![714](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/39296a2580ab/bactrev00194-0015.png)
![715](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/c1a314c20a11/bactrev00194-0016.png)
![716](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/7f79731e7442/bactrev00194-0017.png)
![717](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/80bf801d7eaf/bactrev00194-0018.png)
![718](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/1035911a29f6/bactrev00194-0019.png)
![719](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f761/441010/772514785c7f/bactrev00194-0020.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARONSON A. I., SPIEGELMAN S. On the nature of the ribonucleic acid synthesized in the presence of chloramphenicol. Biochim Biophys Acta. 1961 Oct 14;53:84–95. doi: 10.1016/0006-3002(61)90796-x. [DOI] [PubMed] [Google Scholar]
- ARONSON A. I., SPIEGELMAN S. Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim Biophys Acta. 1961 Oct 14;53:70–84. doi: 10.1016/0006-3002(61)90795-8. [DOI] [PubMed] [Google Scholar]
- Barnett W. E., Epler J. L. Fractionation and specificities of two aspartyl-ribonucleic acid and two phenylalanyl-ribonucleic acid synthetases. Proc Natl Acad Sci U S A. 1966 Jan;55(1):184–189. doi: 10.1073/pnas.55.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böck A., Faiman L. E., Neidhardt F. C. Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase. J Bacteriol. 1966 Oct;92(4):1076–1082. doi: 10.1128/jb.92.4.1076-1082.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EIDLIC L., NEIDHARDT F. C. ROLE OF VALYL-SRNA SYNTHETASE IN ENZYME REPRESSION. Proc Natl Acad Sci U S A. 1965 Mar;53:539–543. doi: 10.1073/pnas.53.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FANGMAN W. L., NEIDHARDT F. C. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1839–1843. [PubMed] [Google Scholar]
- FANGMAN W. L., NEIDHARDT F. C. PROTEIN AND RIBONUCLEIC ACID SYNTHESIS IN A MUTANT OF ESCHERICHIA COLI WITH AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE. J Biol Chem. 1964 Jun;239:1844–1847. [PubMed] [Google Scholar]
- Fangman W. L., Nass G., Neidhardt F. C. Immunological and chemical studies of phenylalanyl sRNA synthetase from Escherichia coli. J Mol Biol. 1965 Aug;13(1):202–219. doi: 10.1016/s0022-2836(65)80090-0. [DOI] [PubMed] [Google Scholar]
- GALLANT J., STAPLETON R. PROPERTIES OF A TEMPERATURE-SENSITIVE REGULATORY SYSTEM. Proc Natl Acad Sci U S A. 1963 Aug;50:348–355. doi: 10.1073/pnas.50.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORINI L., KATAJA E. PHENOTYPIC REPAIR BY STREPTOMYCIN OF DEFECTIVE GENOTYPES IN E. COLI. Proc Natl Acad Sci U S A. 1964 Mar;51:487–493. doi: 10.1073/pnas.51.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORINI L. Regulation en retour (feedback control) de la synthèse de l'arginine chez Escherichia coli. Bull Soc Chim Biol (Paris) 1958;40(12):1939–1952. [PubMed] [Google Scholar]
- HORIUCHI T., HORIUCHI S., NOVICK A. A temperature-sensitive regulatory system. J Mol Biol. 1961 Oct;3:703–704. doi: 10.1016/s0022-2836(61)80035-1. [DOI] [PubMed] [Google Scholar]
- KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
- Lark K. G. Regulation of chromosome replication and segregation in bacteria. Bacteriol Rev. 1966 Mar;30(1):3–32. doi: 10.1128/br.30.1.3-32.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
- Morris D. W., DeMoss J. A. Polysome transitions and the regulation of ribonucleic acid synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):262–268. doi: 10.1073/pnas.56.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. W., DeMoss J. A. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1624–1631. doi: 10.1128/jb.90.6.1624-1631.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C. The regulation RNA synthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1964;3:145–181. doi: 10.1016/s0079-6603(08)60741-2. [DOI] [PubMed] [Google Scholar]
- O'Donovan G. A., Ingraham J. L. Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc Natl Acad Sci U S A. 1965 Aug;54(2):451–457. doi: 10.1073/pnas.54.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravel J. M., White M. N., Shive W. Activation of tyrosine analogs in relation to enzyme repression. Biochem Biophys Res Commun. 1965 Jul 26;20(3):352–359. doi: 10.1016/0006-291x(65)90372-4. [DOI] [PubMed] [Google Scholar]
- Ron E. Z., Kohler R. E., Davis B. D. Increased stability of polysomes in an Escherichia coli mutant with relaxed control of RNA synthesis. Proc Natl Acad Sci U S A. 1966 Aug;56(2):471–475. doi: 10.1073/pnas.56.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHLESINGER S., MAGASANIK B. EFFECT OF ALPHA-METHYLHISTIDINE ON THE CONTROL OF HISTIDINE SYNTHESIS. J Mol Biol. 1964 Sep;9:670–682. doi: 10.1016/s0022-2836(64)80174-1. [DOI] [PubMed] [Google Scholar]
- STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stent G. S. Genetic transcription. Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):181–197. doi: 10.1098/rspb.1966.0022. [DOI] [PubMed] [Google Scholar]
- TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TISSIERES A., BOURGEOIS S., GROS F. Inhibition of RNA polymerase by RNA. J Mol Biol. 1963 Jul;7:100–103. doi: 10.1016/s0022-2836(63)80024-8. [DOI] [PubMed] [Google Scholar]
- Umbarger H. E. Intracellular Regulatory Mechanisms: Regulation in multicellular forms may be an elaboration upon the pattern evolved in microorganisms. Science. 1964 Aug 14;145(3633):674–679. doi: 10.1126/science.145.3633.674. [DOI] [PubMed] [Google Scholar]
- Weber M. J., DeMoss J. A. The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc Natl Acad Sci U S A. 1966 May;55(5):1224–1230. doi: 10.1073/pnas.55.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaniv M., Jacob F., Gros F. Mutations thermosensibles des systèmes activant la valine chez E. coli. Bull Soc Chim Biol (Paris) 1965;47(8):1609–1626. [PubMed] [Google Scholar]
- Yegian C. D., Stent G. S., Martin E. M. Intracellular condition of Escherichia coli transfer RNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):839–846. doi: 10.1073/pnas.55.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]