Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1960 Sep;24(3):309–339. doi: 10.1128/br.24.3.309-339.1960

THE BIOSYNTHESIS AND INTERCONVERSION OF PURINES AND THEIR DERIVATIVES1

Albert G Moat a, Herman Friedman a,2
PMCID: PMC441056  PMID: 13771577

Full text

PDF
309

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AARONSON S., NATHAN H. A. Utilization of imidazole counterparts of purines in microbial systems. Biochim Biophys Acta. 1954 Oct;15(2):306–307. doi: 10.1016/0006-3002(54)90082-7. [DOI] [PubMed] [Google Scholar]
  2. AARONSON S., RODRIGUEZ E. Utilization of purines and their derivatives by Gaffkya homari. J Bacteriol. 1957 Dec;74(6):807–810. doi: 10.1128/jb.74.6.807-810.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. AARONSON S. The purine requirement of Staphylococcus flavocyaneus. J Gen Microbiol. 1955 Feb;12(1):147–155. doi: 10.1099/00221287-12-1-147. [DOI] [PubMed] [Google Scholar]
  4. ABRAMS R., BENTLEY M. Biosynthesis of nucleic acid purines. II. Role of hypoxanthine and xanthine compounds. Arch Biochem Biophys. 1955 Sep;58(1):109–118. doi: 10.1016/0003-9861(55)90098-9. [DOI] [PubMed] [Google Scholar]
  5. BALIS M. E., BROOKE M. S., BROWN G. B., MAGASANIK B. The utilization of purines by purineless mutants of Aerobacter aerogenes. J Biol Chem. 1956 Apr;219(2):917–926. [PubMed] [Google Scholar]
  6. BALIS M. E., HYLIN V., COULTAS M. K., HUTCHINSON D. J. Metabolism of resistant mutants of Streptococcus faecalis. III. The action of 6-mercaptopurine. Cancer Res. 1958 May;18(4):440–444. [PubMed] [Google Scholar]
  7. BALIS M. E., LARK C. T., LUZZATI D. Nucleotide utilization by Escherichia coli. J Biol Chem. 1955 Feb;212(2):641–645. [PubMed] [Google Scholar]
  8. BALIS M. E., LEVIN D. H., LUZZATI D. A purine-histidine relationship in Escherichia coli. J Biol Chem. 1955 Sep;216(1):9–16. [PubMed] [Google Scholar]
  9. BALIS M. E., VAN PRAAG D., BROWN G. B. Studies on the metabolism of human tumors. I. Pentosenucleic acid synthesis in tumorbearing hamsters. Cancer Res. 1955 Nov;15(10):673–678. [PubMed] [Google Scholar]
  10. BALLIO A., SERLUPI-CRESCENZI G. Isolation of adenylosuccinic acid from Penicillium chrysogenum. Nature. 1957 Jan 19;179(4551):154–154. doi: 10.1038/179154a0. [DOI] [PubMed] [Google Scholar]
  11. BEN-ISHAI R., BERGMAN E. D., VOLCANI B. E. Ribosidation of 4-amino-imidazole-5-carboxamide by Escherichia coli. Nature. 1951 Dec 29;168(4287):1124–1124. doi: 10.1038/1681124a0. [DOI] [PubMed] [Google Scholar]
  12. BEN-ISHAI R., VOLCANI B., BERGMAN E. The synthesis of the purine nucleus by Escherichia coli, a study on the mode of action of sulfa-drugs. Experientia. 1951 Feb 2;7(2):63–64. doi: 10.1007/BF02153827. [DOI] [PubMed] [Google Scholar]
  13. BEN-ISHAI R., VOLCANI B., BERGMANN E. D. 4-Amino-imidazole-5-carboxamide, precursor of the purines in E. coli. Arch Biochem Biophys. 1951 Jun;32(1):229–230. doi: 10.1016/0003-9861(51)90264-0. [DOI] [PubMed] [Google Scholar]
  14. BENNETT L. L., Jr, SCHABEL F. M., Jr, SKIPPER H. E. Studies on the mode of action of azaserine. Arch Biochem Biophys. 1956 Oct;64(2):423–436. doi: 10.1016/0003-9861(56)90286-7. [DOI] [PubMed] [Google Scholar]
  15. BENNETT L. L., Jr, SKIPPER H. E., STOCK C. C., RHOADS C. P. Searches for exploitable biochemical differences between normal and cancer cells. I. Nucleic acid purine metabolism in animal neoplasms. Cancer Res. 1955 Aug;15(7):485–491. [PubMed] [Google Scholar]
  16. BENNETT L. L., Jr, SKIPPER H. E. Searches for exploitable biochemical differences between normal and cancer cells. III. Effects of aminoimidazolecarboxamide on purine metabolism. Cancer Res. 1957 Jun;17(5):370–373. [PubMed] [Google Scholar]
  17. BENNETT L. L., Jr, SKIPPER H. E., TOOLAN H. W., RHOADS C. P. Searches for exploitable biochemical differences between normal and cancer cells. II. Nucleic acid purine metabolism in human tumors. Cancer Res. 1956 Mar;16(3):262–266. [PubMed] [Google Scholar]
  18. BROCKMAN R. W., SPARKS M. C., SIMPSON M. S. A comparison of the metabolism of purines and purine analogs by susceptible and drug-resistant bacterial and neoplastic cells. Biochim Biophys Acta. 1957 Dec;26(3):671–672. doi: 10.1016/0006-3002(57)90134-8. [DOI] [PubMed] [Google Scholar]
  19. BROWN G. B. Chemical pathways of nucleic acid biosynthesis. Fed Proc. 1956 Jul;15(2):823–826. [PubMed] [Google Scholar]
  20. BUCHANAN J. M., HARTMAN S. C., LEVENBERG B. Biosynthesis of the purines. XI. Structure, enzymatic synthesis, and metabolism of glycinamide ribotide and (alpha-N-formyl)-glycinamide ribotide. J Biol Chem. 1956 Aug;221(2):1057–1070. [PubMed] [Google Scholar]
  21. BUCHANAN J. M. The effect of azaserine and 6-diazo-5-oxo-L-norleucine on the biosynthesis of inosinic acid de novo. Tex Rep Biol Med. 1957;15(1):148–153. [PubMed] [Google Scholar]
  22. CAPUTTO R. The enzymatic synthesis of adenylic acid; adenosinekinase. J Biol Chem. 1951 Apr;189(2):801–814. [PubMed] [Google Scholar]
  23. CARLO P. E., MANDEL H. G. The effect of 4-amino-5-imidazolecarboxamide on the toxicity of 8-azaguanine. Cancer Res. 1954 Jul;14(6):459–462. [PubMed] [Google Scholar]
  24. CARTER C. E., COHEN L. H. The preparation and properties of adenylosuccinase and adenylosuccinic acid. J Biol Chem. 1956 Sep;222(1):17–30. [PubMed] [Google Scholar]
  25. CARTER C. E. Metabolism of purines and pyrimidines. Annu Rev Biochem. 1956;25:123–146. doi: 10.1146/annurev.bi.25.070156.001011. [DOI] [PubMed] [Google Scholar]
  26. CHAMBERLAIN N., CUTTS N. S., RAINBOW C. The formation of pigment and arylamine by yeasts. J Gen Microbiol. 1952 Aug;7(1-2):54–60. doi: 10.1099/00221287-7-1-2-54. [DOI] [PubMed] [Google Scholar]
  27. CHAMBERLAIN N., RAINBOW C. The formation of diazotizable amine and hypoxanthine by a yeast: possible implications in the biosynthesis of purines. J Gen Microbiol. 1954 Oct;11(2):180–190. doi: 10.1099/00221287-11-2-180. [DOI] [PubMed] [Google Scholar]
  28. CHRISTMAN A. A. [Purine and pyrimidine metabolism]. Physiol Rev. 1952 Jul;32(3):303–348. doi: 10.1152/physrev.1952.32.3.303. [DOI] [PubMed] [Google Scholar]
  29. DALBY A., HOLDSWORTH E. Growth factors for Corynebacterium diphtheriae strain Dundee. J Gen Microbiol. 1956 Oct;15(2):335–344. doi: 10.1099/00221287-15-2-335. [DOI] [PubMed] [Google Scholar]
  30. DANCIS J., BALIS M. E. The reutilization of nucleic acid catabolites. J Biol Chem. 1954 Mar;207(1):367–374. [PubMed] [Google Scholar]
  31. DE LAMIRANDE G., ALLARD C., CANTERO A. Purine-metabolizing enzymes in normal rat liver and Novikoff hepatoma. Cancer Res. 1958 Sep;18(8 Pt 1):952–958. [PubMed] [Google Scholar]
  32. DI CARLO F. J., SCHULTZ A. S., FISHER R. A. Yeast nucleic acid. III. The effect of glycine on yeast proliferation and nucleic acid biosynthesis. Arch Biochem. 1950 Jun;27(1):29–33. [PubMed] [Google Scholar]
  33. DRYSDALE G. R., PLAUT G. W. E., LARDY H. A. The relationship of folic acid to formate metabolism in the rat; formate incorporation into purines. J Biol Chem. 1951 Dec;193(2):533–538. [PubMed] [Google Scholar]
  34. EDMONDS M., DELLUVA A. M., WILSON D. W. The metabolism of purines and pyrimidines by growing yeast. J Biol Chem. 1952 May;197(1):251–259. [PubMed] [Google Scholar]
  35. EICHEL H. J. Purine-metabolizing enzymes of Tetrahymena pyriformis. J Biol Chem. 1956 May;220(1):209–220. [PubMed] [Google Scholar]
  36. ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
  37. ELION G. B., SINGER S., HITCHINGS G. H., BALIS M. E., DROWN G. B. Effects of purine antagonists on a diaminopurine-resistant strain of Lactobacillus casei. J Biol Chem. 1953 Jun;202(2):647–654. [PubMed] [Google Scholar]
  38. ELION G. B., SINGER S., HITCHINGS G. H. Microbiological effects of 6-mercaptopurine. Ann N Y Acad Sci. 1954 Dec 6;60(2):200–206. doi: 10.1111/j.1749-6632.1954.tb40009.x. [DOI] [PubMed] [Google Scholar]
  39. ELION G. B., SINGER S., HITCHINGS G. H. The purine metabolism of a 6-mercaptopurine-resistant Lactobacillus casei. J Biol Chem. 1953 Sep;204(1):35–41. [PubMed] [Google Scholar]
  40. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVI. The synthesis of adenosine 5'-phosphate and 5-amino-4-imidazolecarboxamide ribotide by a nucleotide pyrophosphorylase. J Biol Chem. 1957 Sep;228(1):201–213. [PubMed] [Google Scholar]
  41. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5'-phosphate transformylase and inosinicase. J Biol Chem. 1957 Dec;229(2):603–612. [PubMed] [Google Scholar]
  42. FLAKS J. G., WARREN L., BUCHANAN J. M. Biosynthesis of the purines. XVII. Further studies of the inosinic acid transformylase system. J Biol Chem. 1957 Sep;228(1):215–229. [PubMed] [Google Scholar]
  43. FRIEDMAN H., MOAT A. G. A comparison of nutritional and genetic blocks in the synthesis of purines by yeasts, molds and bacteria. Arch Biochem Biophys. 1958 Nov;78(1):146–156. doi: 10.1016/0003-9861(58)90323-0. [DOI] [PubMed] [Google Scholar]
  44. FRIEDMAN H., MOAT A. G., WILKINS C. N., Jr A role for biotin in purine biosynthesis. J Biol Chem. 1956 Dec;223(2):985–991. [PubMed] [Google Scholar]
  45. FRIEDMAN S., GOTS J. S. Deamination of isoguanine by Escherichia coli. Arch Biochem Biophys. 1951 Jun;32(1):227–229. doi: 10.1016/0003-9861(51)90263-9. [DOI] [PubMed] [Google Scholar]
  46. FRIEDMAN S., GOTS J. S. The purine and pyrimidine metabolism of normal and phage-infected Escherichia coli. J Biol Chem. 1953 Mar;201(1):125–135. [PubMed] [Google Scholar]
  47. FRIES N. Further studies on mutant strains of Ophiostoma which require guanine. J Biol Chem. 1953 Jan;200(1):325–333. [PubMed] [Google Scholar]
  48. GOLDTHWAIT D. A. 5-Phosphoribosylamine, a precursor of glycinamide ribotide. J Biol Chem. 1956 Oct;222(2):1051–1068. [PubMed] [Google Scholar]
  49. GOLDTHWAIT D. A., BENDICH A. Effects of a folic acid antagonist on nucleic acid metabolism. J Biol Chem. 1952 May;196(2):841–852. [PubMed] [Google Scholar]
  50. GOLDTHWAIT D. A., GREENBERG G. R., PEABODY R. A. On the occurrence of glycinamide ribotide and its formyl derivative. J Biol Chem. 1956 Aug;221(2):555–567. [PubMed] [Google Scholar]
  51. GOLDTHWAIT D. A., GREENBERG G. R., PEABODY R. A. The structure of glycinamide ribotide. J Biol Chem. 1956 Aug;221(2):1071–1081. [PubMed] [Google Scholar]
  52. GOLLUB E. G., GOTS J. S. Purine metabolism in bacteria. IV. L-azaserine as an inhibitor. J Bacteriol. 1956 Dec;72(6):858–864. doi: 10.1128/jb.72.6.858-864.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. GOLLUB E. G., GOTS J. S. Purine metabolism in bacteria. VI. Accumulations by mutants lacking adenylosuccinase. J Bacteriol. 1959 Sep;78:320–325. doi: 10.1128/jb.78.3.320-325.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. GOTS J. S., CHU E. C. Studies on purine metabolism in bacteria. I. The role of p-aminobenzoic acid. J Bacteriol. 1952 Oct;64(4):537–546. doi: 10.1128/jb.64.4.537-546.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. GOTS J. S., LOVE S. H. Purine metabolism in bacteria. II. Factors influencing biosynthesis of 4-amino-5-imidazolecarboxamide by Escherichia coli. J Biol Chem. 1954 Sep;210(1):395–405. [PubMed] [Google Scholar]
  56. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  57. GOTS J. S. The accumulation of 4-amino-5-imidazolecarboxamide by a purine-requiring mutant of Escherichia coli. Arch Biochem. 1950 Nov;29(1):222–224. [PubMed] [Google Scholar]
  58. GREENBERG G. R. Role of folic acid derivatives in purine biosynthesis. Fed Proc. 1954 Sep;13(3):745–759. [PubMed] [Google Scholar]
  59. GREENBERG G. R., SPILMAN E. L. Isolation of 5-amino-4-imidazolecarboxamide riboside. J Biol Chem. 1956 Mar;219(1):411–422. [PubMed] [Google Scholar]
  60. GREENLEES J., LEPAGE G. A. Purine biosynthesis and inhibitors in ascites cell tumors. Cancer Res. 1956 Sep;16(8):808–813. [PubMed] [Google Scholar]
  61. Giles N. H., Partridge C. W., Nelson N. J. THE GENETIC CONTROL OF ADENYLOSUCCINASE IN Neurospora Crassa. Proc Natl Acad Sci U S A. 1957 Apr 15;43(4):305–317. doi: 10.1073/pnas.43.4.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Gots J. S., Gollub E. G. SEQUENTIAL BLOCKADE IN ADENINE BIOSYNTHESIS BY GENETIC LOSS OF AN APPARENT BIFUNCTIONAL DEACYLASE. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):826–834. doi: 10.1073/pnas.43.9.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Guthrie R. STUDIES OF A PURINE-REQUIRING MUTANT STRAIN OF ESCHERICHIA COLI. J Bacteriol. 1949 Jan;57(1):39–46. doi: 10.1128/jb.57.1.39-46.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. HARTMAN S. C., BUCHANAN J. M. Biosynthesis of the purines. XXI. 5-Phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1958 Aug;233(2):451–455. [PubMed] [Google Scholar]
  65. HARTMAN S. C., BUCHANAN J. M. Biosynthesis of the purines. XXII. 2-Amino-N-ribosylacetamide-5'-phosphate kinosynthase. J Biol Chem. 1958 Aug;233(2):456–461. [PubMed] [Google Scholar]
  66. HARTMAN S. C., BUCHANAN J. M. Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu Rev Biochem. 1959;28:365–410. doi: 10.1146/annurev.bi.28.070159.002053. [DOI] [PubMed] [Google Scholar]
  67. HENDERSON J. F., LEPAGE G. A. Utilization of host purines by transplanted tumors. Cancer Res. 1959 Jan;19(1):67–71. [PubMed] [Google Scholar]
  68. HEPPEL L. A., RABINOWITZ J. C. Enzymology of nucleic acids, purines, and pyrimidines. Annu Rev Biochem. 1958;27(3):613–642. doi: 10.1146/annurev.bi.27.070158.003145. [DOI] [PubMed] [Google Scholar]
  69. HURWITZ J., HEPPEL L. A., HORECKER B. L. The enzymatic cleavage of adenylic acid to adenine and ribose 5-phosphate. J Biol Chem. 1957 May;226(1):525–540. [PubMed] [Google Scholar]
  70. HUTCHISON D. J. Metabolism of resistant mutants of Streptococcus faecalis. I. Isolation and characterization of the mutants. Cancer Res. 1958 Feb;18(2):214–219. [PubMed] [Google Scholar]
  71. JAENICKE L. Occurrence of N10-formyltetrahydrofolic acid and its general involvement in transformylation. Biochim Biophys Acta. 1955 Aug;17(4):588–589. doi: 10.1016/0006-3002(55)90427-3. [DOI] [PubMed] [Google Scholar]
  72. JOKLIK W. K. The occurrence of adenine- and adenyl-succinic acid in mammalian liver. Biochim Biophys Acta. 1956 Oct;22(1):211–212. doi: 10.1016/0006-3002(56)90253-0. [DOI] [PubMed] [Google Scholar]
  73. KELLY H. J., SKIPPER H. E., TOMISEK A. J. Chromatographic studies of purine metabolism. I. The effect of azaserine on purine biosynthesis in E. coli using various C14-labeled precursors. Arch Biochem Biophys. 1956 Oct;64(2):437–455. doi: 10.1016/0003-9861(56)90287-9. [DOI] [PubMed] [Google Scholar]
  74. KERR S. E., CHERNIGOY F. On the biosynthesis of ribonucleic acid purines and their interconversion in yeast. J Biol Chem. 1953 Feb;200(2):887–894. [PubMed] [Google Scholar]
  75. KOCH A. L., PUTNAM F. W., EVANS E. A., Jr The purine metabolism of Escherichia coli. J Biol Chem. 1952 May;197(1):105–112. [PubMed] [Google Scholar]
  76. KOCH A. L. The kinetics of gycine incorporation by Escherichia coli. J Biol Chem. 1955 Dec;217(2):931–945. [PubMed] [Google Scholar]
  77. KOCH A. L. The metabolism of methylpurines by Escherichia coli. I. Tracer studies. J Biol Chem. 1956 Mar;219(1):181–188. [PubMed] [Google Scholar]
  78. KORNBERG A., LIEBERMAN I., SIMMS E. S. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem. 1955 Jul;215(1):389–402. [PubMed] [Google Scholar]
  79. KORNBERG A., PRICER W. E., Jr Enzymatic phosphorylation of adenosine and 2,6-diaminopurine riboside. J Biol Chem. 1951 Dec;193(2):481–495. [PubMed] [Google Scholar]
  80. KORN E. D., REMY C. N., WASILEJKO H. C., BUCHANAN J. M. Biosynthesis of the purines. VII. Synthesis of nucleotides from bases by partially purified enzymes. J Biol Chem. 1955 Dec;217(2):875–883. [PubMed] [Google Scholar]
  81. LAGERKVIST U. Biosynthesis of guanosine 5'-phosphate. I. Xanthosine 5'-phosphate as an intermediate. J Biol Chem. 1958 Jul;233(1):138–142. [PubMed] [Google Scholar]
  82. LAGERKVIST U. Biosynthesis of guanosine 5'-phosphate. II. Amination of xanthosine 5'-phosphate by purified enzyme from pigeon liver. J Biol Chem. 1958 Jul;233(1):143–149. [PubMed] [Google Scholar]
  83. LAMPEN J. O. Metabolism of nucleic acid components in bacteria. Bacteriol Rev. 1952 Dec;16(4):211–225. doi: 10.1128/br.16.4.211-225.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. LAMPEN J. O., WANG T. P. The mechanism of action of Lactobacillus pentosus nucleosidase. J Biol Chem. 1952 Sep;198(1):385–395. [PubMed] [Google Scholar]
  85. LANDEFELD M. O., REID J. C. Synthesis of purines and methyl groups from carbon atom of histidine. Arch Biochem Biophys. 1951 Nov;34(1):219–221. doi: 10.1016/s0003-9861(51)80029-8. [DOI] [PubMed] [Google Scholar]
  86. LARDY H. A., PEANASKY R. Metabolic functions of biotin. Physiol Rev. 1953 Oct;33(4):560–565. doi: 10.1152/physrev.1953.33.4.560. [DOI] [PubMed] [Google Scholar]
  87. LEE Y. P. 5'-Adenylic acid deaminase. I. Isolation of the crystalline enzyme from rabbit skeletal muscle. J Biol Chem. 1957 Aug;227(2):987–992. [PubMed] [Google Scholar]
  88. LEPAGE G. A., GREENLEES J., FERNANDES J. F. Studies of nucleic acid synthesis in ascites tumor cells. Ann N Y Acad Sci. 1956 Mar 14;63(5):999–1007. doi: 10.1111/j.1749-6632.1956.tb50907.x. [DOI] [PubMed] [Google Scholar]
  89. LEPAGE G. A., SARTORELLI A. C. Purine synthesis in ascites tumor cells. Tex Rep Biol Med. 1957;15(1):169–180. [PubMed] [Google Scholar]
  90. LEVENBERG B., BUCHANAN J. M. Biosynthesis of the purines. XII. Structure, enzymatic synthesis, and metabolism of 5-amino-imidazole ribotide. J Biol Chem. 1957 Feb;224(2):1005–1018. [PubMed] [Google Scholar]
  91. LEVENBERG B., BUCHANAN J. M. Biosynthesis of the purines. XIII. Structure, enzymatic synthesis, and metabolism of (alpha-N-formyl)-glycinamidine ribotide. J Biol Chem. 1957 Feb;224(2):1019–1027. [PubMed] [Google Scholar]
  92. LEVENBERG B., MELNICK I., BUCHANAN J. M. Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J Biol Chem. 1957 Mar;225(1):163–176. [PubMed] [Google Scholar]
  93. LICHSTEIN H. C. Functions of biotin in enzyme systems. Vitam Horm. 1951;9:27–74. doi: 10.1016/s0083-6729(08)60469-0. [DOI] [PubMed] [Google Scholar]
  94. LIEBERMAN I. Enzymatic synthesis of adenosine-5'-phosphate from inosine-5'-phosphate. J Biol Chem. 1956 Nov;223(1):327–339. [PubMed] [Google Scholar]
  95. LITTLEFIELD J. W., DUNN D. B. The occurrence and distribution of thymine and three methylated-adenine bases in ribonucleic acids from several sources. Biochem J. 1958 Dec;70(4):642–651. doi: 10.1042/bj0700642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. LONES D. P., RAINBOW C., WOODWARD J. D. A diazotizable amine produced by yeast: its chemical nature and factors affecting its accumulation. J Gen Microbiol. 1958 Aug;19(1):146–160. doi: 10.1099/00221287-19-1-146. [DOI] [PubMed] [Google Scholar]
  97. LOVE S. H., GOTS J. S. Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J Biol Chem. 1955 Feb;212(2):647–654. [PubMed] [Google Scholar]
  98. LOVE S. H. Synthesis of purine intermediates by a cell-free extract of Escherichia coli. J Bacteriol. 1956 Nov;72(5):628–631. doi: 10.1128/jb.72.5.628-631.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. LUKENS L. N., BUCHANAN J. M. Biosynthesis of the purines. XXIII. The enzymatic synthesis of N-(5-amino-1-ribosyl-4-imidazolylcarbonyl)-L-aspartic acid 5'-phosphate. J Biol Chem. 1959 Jul;234(7):1791–1798. [PubMed] [Google Scholar]
  100. LUKENS L. N., HERRINGTON K. A. Enzymic formation of 6-mercaptopurine tibo tide. Biochim Biophys Acta. 1957 May;24(2):432–433. doi: 10.1016/0006-3002(57)90220-2. [DOI] [PubMed] [Google Scholar]
  101. LUZZATI D., GUTHRIE R. Studies of a purine- or histidine-requiring mutant of Escherichia coli. J Biol Chem. 1955 Sep;216(1):1–8. [PubMed] [Google Scholar]
  102. MACNUTT W. S. The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem J. 1952 Jan;50(3):384–397. doi: 10.1042/bj0500384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. MAGASANIK B., MOYED H. S., GEHRING L. B. Enzymes essential for the biosynthesis of nucleic acid guanine; inosine 5'-phosphate dehydrogenase of Aerobacter aerogenes. J Biol Chem. 1957 May;226(1):339–350. [PubMed] [Google Scholar]
  104. MAGASANIK B. Nutrition of bacteria and fungi. Annu Rev Microbiol. 1957;11:221–252. doi: 10.1146/annurev.mi.11.100157.001253. [DOI] [PubMed] [Google Scholar]
  105. MANDEL H. G. Incorporation of 8-azaguanine and growth inhibition Bacillus cereus. J Biol Chem. 1957 Mar;225(1):137–150. [PubMed] [Google Scholar]
  106. MANDEL H. G., SUGARMAN G. I., APTER R. A. Fractionation studies of Bacillus cereus containing 8-azaguanine. J Biol Chem. 1957 Mar;225(1):151–156. [PubMed] [Google Scholar]
  107. MANSON L. A., LAMPEN J. O. The metabolism of hypoxanthine desoxyriboside in animal tissues. J Biol Chem. 1951 Jul;191(1):95–104. [PubMed] [Google Scholar]
  108. MELNICK I., BUCHANAN J. M. Biosynthesis of the purines. XIV. Conversion of (alpha-N-formyl) glycinamide ribotide to (alpha-N-formyl) glycinamidine ribotide; purification and requirements of the enzyme system. J Biol Chem. 1957 Mar;225(1):157–162. [PubMed] [Google Scholar]
  109. MILLER Z. Studies on the metabolism of 4-amino-5-imidazolecarboxamide in vitro. II. Utilization by actively growing tissues. J Biol Chem. 1957 Apr;225(2):715–721. [PubMed] [Google Scholar]
  110. MILLER Z., WARREN L. Studies on the metabolism of 4-amino-5-imidazolecarboxamide in vitro. I. Utilization by normal tissue preparations. J Biol Chem. 1953 Nov;205(1):331–343. [PubMed] [Google Scholar]
  111. MIURA Y., NOGUCHI T. The incorporation in vitro of 4-amino-5-imidazole-carboxamide into the polynucleotides of pigeon liver cells. J Biol Chem. 1956 Dec;223(2):635–641. [PubMed] [Google Scholar]
  112. MOORE E. C., LEPAGE G. A. In vivo sensitivity of normal and neoplastic mouse tissues to azaserine. Cancer Res. 1957 Sep;17(8):804–808. [PubMed] [Google Scholar]
  113. MOORE E. C., LePAGE G. A. The metabolism of 6-thioguanine in normal and neoplastic tissues. Cancer Res. 1958 Oct;18(9):1075–1083. [PubMed] [Google Scholar]
  114. MOYED H. S., MAGASANIK B. Enzymes essential for the biosynthesis of nucleic acid guanine; xanthosine 5'-phosphate aminase of Aerobacter aerogenes. J Biol Chem. 1957 May;226(1):351–363. [PubMed] [Google Scholar]
  115. McNUTT W. S., Jr Incorporation of the carbon skeleton of adenosine into the purine nucleosides of ribonucleic acid and deoxyribonucleic acid by Neurospora. J Biol Chem. 1958 Jul;233(1):193–196. [PubMed] [Google Scholar]
  116. Mitoma C., Snell E. E. THE ROLE OF PURINE BASES AS HISTIDINE PRECURSORS IN Lactobacillus Casei. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):891–894. doi: 10.1073/pnas.41.11.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. NOGUCHI T. Studies on the biosynthesis of nucleic acids. I. On the rôle of 4-aminoimidazole-5-carboxamide as a precursor of polynucleotide purines. Pharm Bull. 1956 Apr;4(2):92–96. doi: 10.1248/cpb1953.4.92. [DOI] [PubMed] [Google Scholar]
  118. NOGUCHI T. Studies on the biosynthesis of nucleic acids. II. On the rôle of antimetabolites as an inhibitor of polynucleotide biosynthesis. Pharm Bull. 1956 Apr;4(2):97–100. doi: 10.1248/cpb1953.4.97. [DOI] [PubMed] [Google Scholar]
  119. PARTRIDGE C. W., GILES N. H. Identification of major accumulation products of adenine-specific mutants of Neurospora. Arch Biochem Biophys. 1957 Mar;67(1):237–238. doi: 10.1016/0003-9861(57)90261-8. [DOI] [PubMed] [Google Scholar]
  120. PATERSON A. R., ZBARSKY S. H. In vitro synthesis of purines by rat intestinal mucosa. Biochim Biophys Acta. 1955 Nov;18(3):441–442. doi: 10.1016/0006-3002(55)90116-5. [DOI] [PubMed] [Google Scholar]
  121. POMPER S. Purine-requiring and pyrimidine-requiring mutants of Saccharomyces cerevisiae. J Bacteriol. 1952 Jun;63(6):707–713. doi: 10.1128/jb.63.6.707-713.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. RABINOWITZ J. C., BARKER H. A. Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J Biol Chem. 1956 Jan;218(1):147–160. [PubMed] [Google Scholar]
  123. RABINOWITZ J. C., BARKER H. A. Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J Biol Chem. 1956 Jan;218(1):161–173. [PubMed] [Google Scholar]
  124. RABINOWITZ J. C., PRICER W. E., Jr Purine fermentation by Clostridium cylindrosporum. IV. 4-Ureido-5-imidazolecarboxylic acid. J Biol Chem. 1956 Jan;218(1):189–199. [PubMed] [Google Scholar]
  125. RABINOWITZ J. C. Purine fermentation by Clostridium cylindrosporum. III. 4-Amino-5-imidazolecarboxylic acid and 4-aminoimidazole. J Biol Chem. 1956 Jan;218(1):175–187. [PubMed] [Google Scholar]
  126. REID J. C., LANDEFELD M. O., SIMPSON J. L. Metabolism of L-histidine-2-C14 in the normal and the hepatomabearing rat. J Natl Cancer Inst. 1952 Feb;12(4):929–936. [PubMed] [Google Scholar]
  127. REMY C. N., REMY W. T., BUCHANAN J. M. Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of alpha-5-phosphoribosylpyrophosphate. J Biol Chem. 1955 Dec;217(2):885–895. [PubMed] [Google Scholar]
  128. REVEL HR B., MAGASANIK B. Utilization of the imidazole carbon 2 of histidine for the biosynthesis of purines in bacteria. J Biol Chem. 1958 Aug;233(2):439–443. [PubMed] [Google Scholar]
  129. RICHERT D. A., EDWARDS S., WESTERFELD W. W. On the determination of liver xanthine oxidase and the respiration of rat liver homogenates. J Biol Chem. 1949 Nov;181(1):255–271. [PubMed] [Google Scholar]
  130. ROUSH A. H., BETZ R. F. Purification and properties of trans-N-deoxyribosylase. J Biol Chem. 1958 Aug;233(2):261–266. [PubMed] [Google Scholar]
  131. ROUSH A. H., DOMNAS A. J. Induced biosynthesis of uricase in yeast. Science. 1956 Jul 20;124(3212):125–126. doi: 10.1126/science.124.3212.125. [DOI] [PubMed] [Google Scholar]
  132. SABLE H. Z. Phosphorylation of ribose and adenosine in yeast extracts. Proc Soc Exp Biol Med. 1950 Oct;75(1):215–219. doi: 10.3181/00379727-75-18149. [DOI] [PubMed] [Google Scholar]
  133. SARTORELLI A. C., LEPAGE G. A. Inhibition of ascites cell growth by combinations of 6-thioguanine and azaserine. Cancer Res. 1958 Sep;18(8 Pt 1):938–942. [PubMed] [Google Scholar]
  134. SARTORELLI A. C., LEPAGE G. A., MOORE E. C. Metabolic effects of 6-thioguanine. I. Studies on thioguanine-resistant and-sensitive Ehrlich ascites cells. Cancer Res. 1958 Nov;18(10):1232–1239. [PubMed] [Google Scholar]
  135. SARTORELLI A. C., LePAGE G. A. The development and biochemical characterization of resistance to azaserine in a TA 3 ascites carcinoma. Cancer Res. 1958 May;18(4):457–463. [PubMed] [Google Scholar]
  136. SCHOLLER J., BITTNER J. J. Further studies of chemotherapeutic agents in spontaneous mammary adenocarcinomas of mice and in transplants of recent origin. Cancer Res. 1958 May;18(4):464–468. [PubMed] [Google Scholar]
  137. SCHOLLER J., BITTNER J. J., PHILIPS F. S. Chemotherapeutic studies with transplants of spontaneous mammary tumors of mice growing in various hosts. Cancer Res. 1957 Jul;17(6):605–608. [PubMed] [Google Scholar]
  138. SCHOLLER J., PHILIPS F. S., STERNBERG S. S., BITTNER J. J. A comparative study of chemotherapeutic agents in spontaneous mammary adenocarcinomas of mice and in transplants of recent origin. Cancer. 1956 Mar-Apr;9(2):240–251. doi: 10.1002/1097-0142(195603/04)9:2<240::aid-cncr2820090207>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  139. SHEMIN D. Metabolism of glycine: the succinate-glycine cycle. Fed Proc. 1956 Sep;15(3):971–976. [PubMed] [Google Scholar]
  140. SHIVE W. B-Vitamins involved in single carbon unit metabolism. Fed Proc. 1953 Jun;12(2):639–646. [PubMed] [Google Scholar]
  141. SKEGGS H. R., DRISCOLL C. A., TAYLOR H. N., WRIGHT L. D. The nutritional requirements of Lactobacillus bifidus and Lactobacillus leichmannii. J Bacteriol. 1953 Jun;65(6):733–738. doi: 10.1128/jb.65.6.733-738.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. SKIPPER H. E., BELL M., CHAPMAN J. B. Partial reversal of the antileukemic action of folic acid antagonists by nucleic acids. Cancer. 1951 Mar;4(2):357–359. doi: 10.1002/1097-0142(195103)4:2<357::aid-cncr2820040223>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  143. SKIPPER H. E. On the mechanism of action of 6-mercaptopurine. Ann N Y Acad Sci. 1954 Dec 6;60(2):315–321. doi: 10.1111/j.1749-6632.1954.tb40022.x. [DOI] [PubMed] [Google Scholar]
  144. SLOTNICK I. J., SEVAG M. G. An investigation of the natural occurrence of 4-amino-5-imidazolecarboxamide in several strains of Escherichia coli. Arch Biochem Biophys. 1955 Aug;57(2):491–495. doi: 10.1016/0003-9861(55)90309-x. [DOI] [PubMed] [Google Scholar]
  145. SUTTON W. B., SCHLENK F., WERKMAN C. H. Glycine as a precursor of bacterial purines. Arch Biochem Biophys. 1951 Jun;32(1):85–88. doi: 10.1016/0003-9861(51)90240-8. [DOI] [PubMed] [Google Scholar]
  146. Stephenson M., Trim A. R. The metabolism of adenine compounds by Bact. coli: With a micro-method for the estimation of ribose. Biochem J. 1938 Oct;32(10):1740–1751. doi: 10.1042/bj0321740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. TOMISEK A. J., KELLY H. J., REID M. R., SKIPPER H. E. Chromatographic studies of purine metabolism. III. Effects of A-methopterin on formate-C14 utilization in mice bearing susceptible and dependent L1210 leukemia. Arch Biochem Biophys. 1958 Nov;78(1):83–94. doi: 10.1016/0003-9861(58)90316-3. [DOI] [PubMed] [Google Scholar]
  148. TOTTER J. R., BEST A. N. The metabolism of formate-C14 by rabbit bone marrow in vitro. Arch Biochem Biophys. 1955 Feb;54(2):318–329. doi: 10.1016/0003-9861(55)90043-6. [DOI] [PubMed] [Google Scholar]
  149. TOTTER J. R., KELLEY B., DAY P. L., EDWARDS R. R. The metabolism of glycine by folic acid-deficient chick liver homogenates. J Biol Chem. 1950 Sep;186(1):145–151. [PubMed] [Google Scholar]
  150. TSCHUDY D. P., MARSHALL M., GRAFF A., GRAFF S. Studies of nitrogen metabolism in human cancer using isotopically labeled L-aspartic acid. Cancer. 1958 Sep-Oct;11(5):984–995. doi: 10.1002/1097-0142(195809/10)11:5<984::aid-cncr2820110520>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  151. TYNER E. P., HEIDELBERGER C., LePAGE G. A. In vivo studies on incorporation of glycine-2-C14 into proteins and nucleic acid purines. Cancer Res. 1952 Feb;12(2):158–164. [PubMed] [Google Scholar]
  152. WAHBA A. J., RAVEL J. M., SHIVE W. Involvement of aspartic acid in purine biosynthesis. Biochim Biophys Acta. 1954 Aug;14(4):569–569. doi: 10.1016/0006-3002(54)90238-3. [DOI] [PubMed] [Google Scholar]
  153. WAHBA A. J., SHIVE W. A role of aspartic acid in purine biosynthesis. J Biol Chem. 1954 Nov;211(1):155–161. [PubMed] [Google Scholar]
  154. WANG T. P., LAMPEN J. O. The cleavage of adenosine, cytidine, and xanthosine by Lactobacillus pentosus. J Biol Chem. 1951 Sep;192(1):339–347. [PubMed] [Google Scholar]
  155. WARREN L., BUCHANAN J. M. Biosynthesis of the purines. XIX. 2-Amino-N-ribosylacetamide 5'-phosphate (glycinamide ribotide) transformylase. J Biol Chem. 1957 Dec;229(2):613–626. [PubMed] [Google Scholar]
  156. WARREN L., FLAKS J. G., BUCHANAN J. M. Biosynthesis of the purines. XX. Integration of enzymatic transformylation reactions. J Biol Chem. 1957 Dec;229(2):627–640. [PubMed] [Google Scholar]
  157. WEBB M. Aminopterin inhibition in Aerobacter aerogenes; alanine and valine accumulation during the inhibition and their utilization on recovery. Biochem J. 1958 Nov;70(3):472–486. doi: 10.1042/bj0700472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. WHITFELD P. R. Accumulation of adenine-succinic acid by an adenine-requiring mutant of Neurospora crassa. Arch Biochem Biophys. 1956 Dec;65(2):585–586. doi: 10.1016/0003-9861(56)90222-3. [DOI] [PubMed] [Google Scholar]
  159. WILLIAMS A. M., LEPAGE G. A. Purine metabolism in mouse ascites tumor cells. 1. Effect of performed purines on in vitro incorporation of glycine-2-C14. Cancer Res. 1958 Jun;18(5):548–553. [PubMed] [Google Scholar]
  160. WILLIAMS A. M., LEPAGE G. A. Purine metabolism in mouse ascites tumor cells. II. In vitro incorporation of performed purines into nucleotides and polynucleotides. Cancer Res. 1958 Jun;18(5):554–561. [PubMed] [Google Scholar]
  161. WILLIAMS W. J., BUCHANAN J. M. Biosynthesis of the purines. V. Conversion of hypoxanthine to inosinic acid by liver enzymes. J Biol Chem. 1953 Aug;203(2):583–593. [PubMed] [Google Scholar]
  162. WINZLER R. J. Differences in nucleic acid metabolism between normal and leukemic human leukocytes. Ann N Y Acad Sci. 1958 Oct 13;75(1):37–44. doi: 10.1111/j.1749-6632.1958.tb36849.x. [DOI] [PubMed] [Google Scholar]
  163. WOESSNER J. F., Jr, BACHHAWAT B. K., COON M. J. Enzymatic activation of carbon dioxide. II. Role of biotin in the carboxylation of beta-hydroxyisovaleryl coenzyme A. J Biol Chem. 1958 Aug;233(2):520–523. [PubMed] [Google Scholar]
  164. WOOD R. C., STEERS E. Study of the purine metabolism of Staphylococcus aureus. J Bacteriol. 1959 Jun;77(6):760–765. doi: 10.1128/jb.77.6.760-765.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. WYNGAARDEN J. B., ASHTON D. M. The regulation of activity of phosphoribosyl-pyrophosphate amidotransferase by purine ribonacleotides: a potential feedback control of purine biosyntoesis. J Biol Chem. 1959 Jun;234(6):1492–1496. [PubMed] [Google Scholar]
  166. WYNGAARDEN J. B., DUNN J. T. 8-Hydroxyadenine as the intermediate in the oxidation of adenine to 2, 8-dihydroxyadenine by xanthine oxidase. Arch Biochem Biophys. 1957 Jul;70(1):150–156. doi: 10.1016/0003-9861(57)90088-7. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES