Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN S. H., Jr, POWELSON D. M. Effect of chloramphenicol on glucose oxidation in Escherichia coli. Science. 1958 Jun 6;127(3310):1341–1342. doi: 10.1126/science.127.3310.1341. [DOI] [PubMed] [Google Scholar]
- ANAND N., DAVIS B. D., ARMITAGE A. K. Uptake of streptomycin by Escherichia coli. Nature. 1960 Jan 2;185:23–24. doi: 10.1038/185023a0. [DOI] [PubMed] [Google Scholar]
- ANAND N., DAVIS B. D. Damage by streptomycin to the cell membrane of Escherichia coli. Nature. 1960 Jan 2;185:22–23. doi: 10.1038/185022a0. [DOI] [PubMed] [Google Scholar]
- ARONSON A. I., SPIEGELMAN S. On the use of chloramphenicol-inhibited systems for investigating RNA and protein synthesis. Biochim Biophys Acta. 1958 Jul;29(1):214–215. doi: 10.1016/0006-3002(58)90170-7. [DOI] [PubMed] [Google Scholar]
- ASTRACHAN L., VOLKIN E. Effects of chloramphenicol on ribonucleic acid metabolism in T2-infected Escherichia coli. Biochim Biophys Acta. 1959 Apr;32:449–456. doi: 10.1016/0006-3002(59)90618-3. [DOI] [PubMed] [Google Scholar]
- BERGERSEN F. J. Cytological changes induced in Bacterium coli by chloramphenicol. J Gen Microbiol. 1953 Dec;9(3):353–356. doi: 10.1099/00221287-9-3-353. [DOI] [PubMed] [Google Scholar]
- BILLEN D. Effects of prior alteration in nucleic acid and protein metabolism on subsequent macromolecular synthesis by irradiated bacteria. J Bacteriol. 1960 Jul;80:86–95. doi: 10.1128/jb.80.1.86-95.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. IV. Activation of the toxin. J Bacteriol. 1960 Jan;79:24–32. doi: 10.1128/jb.79.1.24-32.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOREK E., RYAN A. Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. II. The concomitance of ribonucleic acid synthesis with resumed protein synthesis. J Bacteriol. 1958 Jan;75(1):72–76. doi: 10.1128/jb.75.1.72-76.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOZEMAN F. M., WISSEMAN C. L., Jr, HOPPS H. E., DANAUSKAS J. X. Action of chloramphenicol on T-1 bacteriophage. I. Inhibition of intracellular multiplication. J Bacteriol. 1954 May;67(5):530–536. doi: 10.1128/jb.67.5.530-536.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROCK T. D., BROCK M. L. Similarity in mode of action of chloramphenicol and erythromycin. Biochim Biophys Acta. 1959 May;33(1):274–275. doi: 10.1016/0006-3002(59)90535-9. [DOI] [PubMed] [Google Scholar]
- BROWN C. H. Elimination of kappa particles from 'killer' strains of Paramecium aurelia by treatment with chloromycetin. Nature. 1950 Sep 23;166(4221):527–527. doi: 10.1038/166527a0. [DOI] [PubMed] [Google Scholar]
- BRUEMMER J. H., RINFRET A. P. Use of chloramphenicol in the study of nitrogen fixation. Biochim Biophys Acta. 1960 Jan 1;37:154–155. doi: 10.1016/0006-3002(60)90094-9. [DOI] [PubMed] [Google Scholar]
- CAVALLI L. L. Genetic analysis of drug-resistance. Bull World Health Organ. 1952;6(1-2):185–206. [PMC free article] [PubMed] [Google Scholar]
- CAVALLI L. L., MACCACARO G. A. Chloromycetin resistance in E. coli, a case of quantitative inheritance in bacteria. Nature. 1950 Dec 9;166(4232):991–992. doi: 10.1038/166991a0. [DOI] [PubMed] [Google Scholar]
- CHRISTENSEN J. R. Effect of chloramphenicol on lysogenization by temperate phage P1. Virology. 1957 Aug;4(1):184–185. doi: 10.1016/0042-6822(57)90054-5. [DOI] [PubMed] [Google Scholar]
- CIAK J., HAHN F. E. Mechanisms of action of antibiotics. I. Additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J Bacteriol. 1958 Feb;75(2):125–129. doi: 10.1128/jb.75.2.125-129.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
- COHN M. Contributions of studies on the beta-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bacteriol Rev. 1957 Sep;21(3):140–168. doi: 10.1128/br.21.3.140-168.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLLINS R. J., ELLIS B., HANSEN S. B., MACKENZIE H. S., MOUALIM R. J., PETROW V., STEPHENSON O., STURGEON B. Some observations on the structural requirements for antibiotic activity in the chloramphenicol series. Part II. J Pharm Pharmacol. 1952 Oct;4(10):693–710. doi: 10.1111/j.2042-7158.1952.tb13204.x. [DOI] [PubMed] [Google Scholar]
- CRAWFORD L. V. Nucleic acid metabolism in Escherichia coli infected with phage T5. Virology. 1959 Apr;7(4):359–374. doi: 10.1016/0042-6822(59)90065-0. [DOI] [PubMed] [Google Scholar]
- Carter H. E., Gottlieb D., Anderson H. W. Chloromycetin and Streptothricin. Science. 1948 Jan 30;107(2770):113–113. doi: 10.1126/science.107.2770.113-b. [DOI] [PubMed] [Google Scholar]
- DELAMATER E. D., HUNTER M. E. Chemically induced aberrations of mitosis in bacteria. J Gen Microbiol. 1955 Apr;12(2):203–212. doi: 10.1099/00221287-12-2-203. [DOI] [PubMed] [Google Scholar]
- DEMOSS J. A., NOVELLI G. D. An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim Biophys Acta. 1956 Oct;22(1):49–61. doi: 10.1016/0006-3002(56)90222-0. [DOI] [PubMed] [Google Scholar]
- DIENES L., WEINBERGER H. J., MADOFF S. The transformation of typhoid bacilli into L forms under various conditions. J Bacteriol. 1950 Jun;59(6):755–764. doi: 10.1128/jb.59.6.755-764.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DJORDJEVIC B., SZYBALSKI W. Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J Exp Med. 1960 Sep 1;112:509–531. doi: 10.1084/jem.112.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUDNEY C. O. Inhibition of nucleic acid synthesis by chloramphenicol in synchronized cultures of Escherichia coli. J Bacteriol. 1960 Jan;79:122–124. doi: 10.1128/jb.79.1.122-124.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DRAKULIC M., ERRERA M. Chloramphenicol-sensitive DNA synthesis in normal and irradiated bacteria. Biochim Biophys Acta. 1959 Feb;31(2):459–463. doi: 10.1016/0006-3002(59)90021-6. [DOI] [PubMed] [Google Scholar]
- Ehrlich J., Bartz Q. R., Smith R. M., Joslyn D. A., Burkholder P. R. Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science. 1947 Oct 31;106(2757):417–417. doi: 10.1126/science.106.2757.417. [DOI] [PubMed] [Google Scholar]
- FASSIN W., HENGEL R., KLEIN P. Bakteriostase und Bakterizidie als Alternativen des antibakteriellen Chloramphenicoleffektes. Z Hyg Infektionskr. 1955;141(4):363–375. [PubMed] [Google Scholar]
- FOSTER J. W., PITTILLO R. F. Metabolite reversal of antibiotic inhibition, especially reversal of aureomycin inhibition by riboflavin. J Bacteriol. 1953 Oct;66(4):478–486. doi: 10.1128/jb.66.4.478-486.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOSTER J. W., PITTILLO R. F. Reversal by complex natural materials of growth inhibition caused by antibiotics. J Bacteriol. 1953 Apr;65(4):361–367. doi: 10.1128/jb.65.4.361-367.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX M. S., HOTCHKISS R. D. Initiation of bacterial transformation. Nature. 1957 Jun 29;179(4574):1322–1325. doi: 10.1038/1791322a0. [DOI] [PubMed] [Google Scholar]
- FUSILLO M. H., METZGER J. F., KUHNS D. M. Effect of chloromycetin and streptomycin on embryonic tissue growth in in vitro tissue culture. Proc Soc Exp Biol Med. 1952 Mar;79(3):376–377. doi: 10.3181/00379727-79-19384. [DOI] [PubMed] [Google Scholar]
- GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALE E. F., PAINE T. F. The assimilation of amino-acids by bacteria; the action of inhibitors and antibiotics on the accumulation of free glutamic acid and the formation of combined of combined glutamate in Staphylococcus aureus. Biochem J. 1951 Mar;48(3):298–301. doi: 10.1042/bj0480298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GILLIES N. E., ALPER T. Reduction in the lethal effects of radiations on Escherichia coli beta by treatment with chloramphenicol. Nature. 1959 Jan 24;183(4656):237–238. doi: 10.1038/183237a0. [DOI] [PubMed] [Google Scholar]
- GLASS E. A., NOVICK A. Induction of mutation in chloramphenicol-inhibited bacteria. J Bacteriol. 1959 Jan;77(1):10–16. doi: 10.1128/jb.77.1.10-16.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROS F., GROS Françoise Role des acides amines dans la synthèse des acides nucléiques chez Escherichia coli. Exp Cell Res. 1958 Feb;14(1):104–131. doi: 10.1016/0014-4827(58)90218-0. [DOI] [PubMed] [Google Scholar]
- HAHN F. E., HO R., HOPPS H. E., SMADEL J. E., WISSEMAN C. L., Jr Mode of action of chloramphenicol. IV. Failure of selected natural metabolites to reverse antibiotic action. J Bacteriol. 1956 Oct;72(4):561–567. doi: 10.1128/jb.72.4.561-567.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAHN F. E., SCHAECHTER M., CEGLOWSKI W. S., HOPPS H. E., CIAK J. Interrelations between nucleic acid and protein biosynthesis. I. Synthesis and fate of bacterial nucleic acids during exposure to, and recovery from the action of chloramphenicol. Biochim Biophys Acta. 1957 Dec;26(3):469–476. doi: 10.1016/0006-3002(57)90092-6. [DOI] [PubMed] [Google Scholar]
- HAHN F. E., WISSEMAN C. L., Jr, HOPPS H. E. Mode of action of chloramphenicol, II. Inhibition of bacterial D-polypeptide formation by an L-stereoisomer of chloramphenicol. J Bacteriol. 1954 Jun;67(6):674–679. doi: 10.1128/jb.67.6.674-679.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAHN F. E., WISSEMAN C. L., Jr, HOPPS H. E. Mode of action of chloramphenicol. III. Action of chloramphenicol on bacterial energy metabolism. J Bacteriol. 1955 Feb;69(2):215–223. doi: 10.1128/jb.69.2.215-223.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANCOCK R. Accumulation of pool amino acids in Staphylococcus aureus following inhibition of protein synthesis. Biochim Biophys Acta. 1960 Jan 1;37:47–55. doi: 10.1016/0006-3002(60)90077-9. [DOI] [PubMed] [Google Scholar]
- HAROLD F. M., ZIPORIN Z. Z. The relationship between the synthesis of DNA and protein in Escherichia coli treated with sulfur mustard. Biochim Biophys Acta. 1958 Jun;28(3):492–503. doi: 10.1016/0006-3002(58)90510-9. [DOI] [PubMed] [Google Scholar]
- HARTMAN S. C., BUCHANAN J. M. Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu Rev Biochem. 1959;28:365–410. doi: 10.1146/annurev.bi.28.070159.002053. [DOI] [PubMed] [Google Scholar]
- HOROWITZ J., LOMBARD A., CHARGAFF E. Aspects of the stability of a bacterial ribonucleic acid. J Biol Chem. 1958 Dec;233(6):1517–1522. [PubMed] [Google Scholar]
- Hopkins J. W. AMINO ACID ACTIVATION AND TRANSFER TO RIBONUCLEIC ACIDS IN THE CELL NUCLEUS. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1461–1470. doi: 10.1073/pnas.45.10.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JAWETZ E., GUNNISON J. B., SPECK R. S., COLEMAN V. R. Studies on antibiotic synergism and antagonism; the interference of chloramphenicol with the action of penicillin. AMA Arch Intern Med. 1951 Mar;87(3):349–359. doi: 10.1001/archinte.1951.03810030022002. [DOI] [PubMed] [Google Scholar]
- JAWETZ E., GUNNISON J. B., SPECK R. S. Studies on antibiotic synergism and antagonism; the interference of aureomycin, chloramphenicol and terramycin with the action of streptomycin. Am J Med Sci. 1951 Oct;222(4):404–412. doi: 10.1097/00000441-195110000-00006. [DOI] [PubMed] [Google Scholar]
- KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRBY W. M., BURNELL J. M. Effect of combinations of antibiotics on lysis of Staphylococcus aureus by penicillin. J Bacteriol. 1954 Jan;67(1):50–52. doi: 10.1128/jb.67.1.50-52.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUSHNER D. J. The action of chloramphenicol on the oxidation of succinate and related compounds by Pseudomonas fluorescens. Arch Biochem Biophys. 1955 Oct;58(2):332–346. doi: 10.1016/0003-9861(55)90133-8. [DOI] [PubMed] [Google Scholar]
- LOEWE S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953 Jun;3(6):285–290. [PubMed] [Google Scholar]
- MAGER J. Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim Biophys Acta. 1960 Feb 12;38:150–152. doi: 10.1016/0006-3002(60)91207-5. [DOI] [PubMed] [Google Scholar]
- MANDELSTAM J., ROGERS H. J. The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem J. 1959 Aug;72:654–662. doi: 10.1042/bj0720654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANDELSTAM J. The free amino acids in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):103–110. doi: 10.1042/bj0690103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. doi: 10.1042/bj0690110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERKEL J. R., STEERS E. Relationship between chloramphenicol reductase activity and chloramphenicol resistance in Escherichia coli. J Bacteriol. 1953 Oct;66(4):389–396. doi: 10.1128/jb.66.4.389-396.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean I. W., Schwab J. L., Hillegas A. B., Schlingman A. S. SUSCEPTIBILITY OF MICRO-ORGANISMS TO CHLORAMPHENICOL (CHLOROMYCETIN). J Clin Invest. 1949 Sep;28(5 Pt 1):953–963. doi: 10.1172/JCI102185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARDEE A. B., PAIGEN K., PRESTIDGE L. S. A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim Biophys Acta. 1957 Jan;23(1):162–173. doi: 10.1016/0006-3002(57)90299-8. [DOI] [PubMed] [Google Scholar]
- POMERAT C. M., LEAKE C. D. Short term cultures for drug assays: general considerations. Ann N Y Acad Sci. 1954 Nov 17;58(7):1110–1128. doi: 10.1111/j.1749-6632.1954.tb45896.x. [DOI] [PubMed] [Google Scholar]
- PRESTIDGE L. S., PARDEE A. B. Induction of bacterial lysis by penicillin. J Bacteriol. 1957 Jul;74(1):48–59. doi: 10.1128/jb.74.1.48-59.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PULVERTAFT R. J. V. The effect of antibiotics on growing cultures of Bacterium coli. J Pathol Bacteriol. 1952 Jan;64(1):75–89. doi: 10.1002/path.1700640110. [DOI] [PubMed] [Google Scholar]
- RAMSEY H. H. Protein synthesis as a basis for chloramphenicol-resistance in Staphylococcus aureus. Nature. 1958 Aug 30;182(4635):602–603. doi: 10.1038/182602a0. [DOI] [PubMed] [Google Scholar]
- SAMUELS P. J. The assimilation of amino acids by bacteria. 17. Synthesis of glutathione by extracts of Escherichia coli. Biochem J. 1953 Oct;55(3):441–444. doi: 10.1042/bj0550441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH G. N. The influence of chloromycetin decomposition products on the growth of Escherichia coli and their effects on reversing the growth-inhibiting action of the antibiotic. Arch Biochem Biophys. 1952 Oct;40(2):314–322. doi: 10.1016/0003-9861(52)90117-3. [DOI] [PubMed] [Google Scholar]
- SZYBALSKI W., BRYSON V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol. 1952 Oct;64(4):489–499. doi: 10.1128/jb.64.4.489-499.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SZYBALSKI W., BRYSON V. Genetic studies on microbial cross-resistance to toxic agents. III. Cross-resistance of Mycobacterium ranae to twenty-eight antimycobacterial agents. Am Rev Tuberc. 1954 Feb;69(2):267–279. doi: 10.1164/art.1954.69.2.267. [DOI] [PubMed] [Google Scholar]
- SZYBALSKI W. Genetic studies on microbial cross resistance to toxic agents. IV. Cross resistance of Bacillus megaterium to forty-four antimicrobial drugs. Appl Microbiol. 1954 Mar;2(2):57–63. doi: 10.1128/am.2.2.57-63.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THOMAS R. Effects of chloramphenicol on genetic replication in bacteriophage lambda. Virology. 1959 Oct;9:275–289. doi: 10.1016/0042-6822(59)90120-5. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON M., JACOBSON W., STOCK C. C. Testing of chemicals for inhibition of the killer action of Paramecium aurelia. J Biol Chem. 1952 May;197(2):763–770. [PubMed] [Google Scholar]
- WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOLLEY D. W. A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine. J Biol Chem. 1950 Jul;185(1):293–305. [PubMed] [Google Scholar]
- Witkin E. M., Theil E. C. THE EFFECT OF POSTTREATMENT WITH OHLORAMPHENICOL VARIOUS ULTRAVIOLET-INDUCED MUTATIONS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Feb;46(2):226–231. doi: 10.1073/pnas.46.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]