Full text
PDF![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/4f44d9223901/bactrev00132-0020.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/af0505d7ad83/bactrev00132-0021.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/52416282a4de/bactrev00132-0022.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/ba48d374c183/bactrev00132-0023.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/2043776cadf3/bactrev00132-0024.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/ffebac28a263/bactrev00132-0025.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/8311022da5da/bactrev00132-0026.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/7f40428c90f0/bactrev00132-0027.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/4d98618057c1/bactrev00132-0028.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/4223a398001c/bactrev00132-0029.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/954ca1914dcf/bactrev00132-0030.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/74d1aa4eb51f/bactrev00132-0031.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/7c57f644ef1b/bactrev00132-0032.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/8b8246688af3/bactrev00132-0033.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/a05a68caacb7/bactrev00132-0034.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/c29bb5961fb3/bactrev00132-0035.png)
![32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/933854280f9c/bactrev00132-0036.png)
![33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/237f3020ddcc/bactrev00132-0037.png)
![34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/3cbfa39d5b7e/bactrev00132-0038.png)
![35](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/1b1d23ae861b/bactrev00132-0039.png)
![36](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/ce3a351805f4/bactrev00132-0040.png)
![37](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/635a4a0bd4b4/bactrev00132-0041.png)
![38](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/75ebf3a20dbd/bactrev00132-0042.png)
![39](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/9a193fa20fbb/bactrev00132-0043.png)
![40](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/9bfbc3dc0790/bactrev00132-0044.png)
![41](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e7/441134/002bc28fb320/bactrev00132-0045.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALEEM M. I., ALEXANDER M. Cell-free nitrification by Nitrobacter. J Bacteriol. 1958 Nov;76(5):510–514. doi: 10.1128/jb.76.5.510-514.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALLEN M. B., VAN NIEL C. B. Experiments on bacterial denitrification. J Bacteriol. 1952 Sep;64(3):397–412. doi: 10.1128/jb.64.3.397-412.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ASNIS R. E., GLICK M. C., VELY V. G. Some enzymatic activities of a particulate fraction from sonic lysates of Escherichia coli. J Bacteriol. 1956 Sep;72(3):314–319. doi: 10.1128/jb.72.3.314-319.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ATKINSON D. E., MCNALL E. G. Nitrate reduction. I. Growth of Escherichia coli with nitrate as sole source of nitrogen. J Bacteriol. 1956 Aug;72(2):226–229. doi: 10.1128/jb.72.2.226-229.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aleem M. I., Nason A. PHOSPHORYLATION COUPLED TO NITRITE OXIDATION BY PARTICLES FROM THE CHEMOAUTOTROPH, NITROBACTER AGILIS. Proc Natl Acad Sci U S A. 1960 Jun;46(6):763–769. doi: 10.1073/pnas.46.6.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAALSRUD K., BAALSRUD K. S. Studies on Thiobacillus denitrificans. Arch Mikrobiol. 1954;20(1):34–62. doi: 10.1007/BF00412265. [DOI] [PubMed] [Google Scholar]
- Bernheim F., Dixon M. The reduction of nitrates in animal tissues. Biochem J. 1928;22(1):125–134. doi: 10.1042/bj0220125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAUDHARY M. T., WILSON T. G., ROBERTS E. R. Studies in the biological fixation of nitrogen. II. Inhibition in Azotobacter vinelandii by hyponitrous acid. Biochim Biophys Acta. 1954 Aug;14(4):507–513. doi: 10.1016/0006-3002(54)90231-0. [DOI] [PubMed] [Google Scholar]
- CHENIAE G. M., EVANS H. L. On the relation between nitrogen fixation and nodule nitrate reductase of soybean root nodules. Biochim Biophys Acta. 1957 Dec;26(3):654–655. doi: 10.1016/0006-3002(57)90122-1. [DOI] [PubMed] [Google Scholar]
- CHENIAE G., EVANS H. J. Properties of a particulate nitrate reductase from the nodules of the soybean plant. Biochim Biophys Acta. 1959 Sep;35:140–153. doi: 10.1016/0006-3002(59)90343-9. [DOI] [PubMed] [Google Scholar]
- CHUNG C. W., NAJJAR V. A. Cofactor requirements for enzymatic denitrification. I. Nitrite reductase. J Biol Chem. 1956 Feb;218(2):617–625. [PubMed] [Google Scholar]
- CHUNG C. W., NAJJAR V. A. Cofactor requirements for enzymatic denitrification. II. Nitric oxide reductase. J Biol Chem. 1956 Feb;218(2):627–632. [PubMed] [Google Scholar]
- COLTER J. S., QUASTEL J. H. Catalytic decomposition of hydroxylamine by hemoglobin. Arch Biochem. 1950 Jul;27(2):368–389. [PubMed] [Google Scholar]
- CRESSWELL C. F., HEWITT E. J. Oxidation of hydroxylamine by plant enzyme systems. Biochem Biophys Res Commun. 1960 Nov;3:544–548. doi: 10.1016/0006-291x(60)90172-8. [DOI] [PubMed] [Google Scholar]
- Candela M. I., Fisher E. G., Hewitt E. J. Molybdenum as a Plant Nutrient. X. Some Factors Affecting the Activity of Nitrate Reductase in Cauliflower Plants Grown with Different Nitrogen Sources and Molybdenum Levels in Sand Culture. Plant Physiol. 1957 Jul;32(4):280–288. doi: 10.1104/pp.32.4.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheniae G., Evans H. J. Physiological Studies on Nodule-Nitrate Reductase. Plant Physiol. 1960 Jul;35(4):454–462. doi: 10.1104/pp.35.4.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE RENZO E. C., KALEITA E., HEYTLER P. G., OLESON J. J., HUTCHINGS B. L., WILLIAMS J. H. Identification of the xanthine oxidase factor as molybdenum. Arch Biochem Biophys. 1953 Aug;45(2):247–253. doi: 10.1016/s0003-9861(53)80001-9. [DOI] [PubMed] [Google Scholar]
- EGAMI F., HAYASE Y., TANIGUCHI S. [Attempted induction of nitrate reducase in an auxotrophic Escherichia coli mutant by hemin]. Ann Inst Pasteur (Paris) 1960 Mar;98:429–438. [PubMed] [Google Scholar]
- Evans H. J., Hall N. S. Association of Molybdenum with Nitrate Reductase from Soybean Leaves. Science. 1955 Nov 11;122(3176):922–923. doi: 10.1126/science.122.3176.922. [DOI] [PubMed] [Google Scholar]
- Evans H. J., Nason A. Pyridine Nucleotide-Nitrate Reductase from Extracts of Higher Plants. Plant Physiol. 1953 Apr;28(2):233–254. doi: 10.1104/pp.28.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARKAS-HIMSLEY H., ARTMAN M. Studies on nitrate reduction by Escherichia coli. J Bacteriol. 1957 Nov;74(5):690–692. doi: 10.1128/jb.74.5.690-692.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FEWSON C. A., NICHOLAS D. J. Nitrate reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:335–349. doi: 10.1016/0006-3002(61)90133-0. [DOI] [PubMed] [Google Scholar]
- FEWSON C. A., NICHOLAS D. J. Utilization of nitric oxide by micro-organisms and higher plants. Nature. 1960 Dec 3;188:794–796. doi: 10.1038/188794a0. [DOI] [PubMed] [Google Scholar]
- Frear D. S., Burrell R. C. The Assimilation of N-from Labeled Hyponitrite by Soybean Leaves. Plant Physiol. 1958 Mar;33(2):105–109. doi: 10.1104/pp.33.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEREDIA C. F., MEDINA A. Nitrate reductase and related enzymes in Escherichia coli. Biochem J. 1960 Oct;77:24–30. doi: 10.1042/bj0770024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hageman R. H., Flesher D. Nitrate Reductase Activity in Corn Seedlings as Affected by Light and Nitrate Content of Nutrient Media. Plant Physiol. 1960 Sep;35(5):700–708. doi: 10.1104/pp.35.5.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IIDA C., YAMASAKI K. Spectrographic determination of molybdenum in the nitrate reductase from Escherichia coli. Biochim Biophys Acta. 1960 Nov 4;44:352–353. doi: 10.1016/0006-3002(60)91572-9. [DOI] [PubMed] [Google Scholar]
- IMSHENETSKII A. A., RUBAN E. L., ARTEMOVA L. I. Beskletochnaia nitrifikatsiia. IV. Ob inaktivatsii vysokoi temperaturoi fermentov Nitrosomonas europea, okisliaiushchikh ammiak. Mikrobiologiia. 1956 Jan-Feb;25(1):12–15. [PubMed] [Google Scholar]
- IMSHENETSKII A. A., RUBAN E. L., BUZINA O. D. Beskletochnaia nitrifikatsiia. III. O dinamike nakopleniia nitritov. Mikrobiologiia. 1955 Sep-Oct;24(5):539–544. [PubMed] [Google Scholar]
- KENTEN R. H., MANN P. J. G. The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochem J. 1953 Feb;53(3):498–505. doi: 10.1042/bj0530498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KENTEN R. H., MANN P. J. G. The oxidation of manganese by enzyme systems. Biochem J. 1952 Sep;52(1):125–130. doi: 10.1042/bj0520125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KESSLER E. Reduction of nitrite with molecular hydrogen in Algae containing hydrogenase. Arch Biochem Biophys. 1956 May;62(1):241–242. doi: 10.1016/0003-9861(56)90110-2. [DOI] [PubMed] [Google Scholar]
- KINSKY S. C., McELROY W. D. Neurospora nitrate reductase: the role of phosphate flavine and cytochrome c reductase. Arch Biochem Biophys. 1958 Feb;73(2):466–483. doi: 10.1016/0003-9861(58)90290-x. [DOI] [PubMed] [Google Scholar]
- KLAUSMEIER R. E., BARD R. C. Ammonium dehydrogenase. J Bacteriol. 1954 Jul;68(1):129–130. doi: 10.1128/jb.68.1.129-130.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLUYVER A. J., VERHOEVEN W. Studies on true dissimilatory nitrate reduction. II. The mechanism of denitrification. Antonie Van Leeuwenhoek. 1954;20(3):241–262. doi: 10.1007/BF02543727. [DOI] [PubMed] [Google Scholar]
- KONO M., TANIGUCHI S. Hydroxylamine reductase of a halotolerant Micrococcus. Biochim Biophys Acta. 1960 Oct 7;43:419–430. doi: 10.1016/0006-3002(60)90466-2. [DOI] [PubMed] [Google Scholar]
- Krasna A. I., Rittenberg D. A COMPARISON OF THE HYDROGENASE ACTIVITIES OF DIFFERENT MICROORGANISMS. Proc Natl Acad Sci U S A. 1956 Apr;42(4):180–185. doi: 10.1073/pnas.42.4.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAZZARINI R. A., ATKINSON D. E. A triphosphopyridine nucleotide-specific nitrite reductase from Escherichia coli. J Biol Chem. 1961 Dec;236:3330–3335. [PubMed] [Google Scholar]
- LENHOFF H. M., NICHOLAS D. J., KAPLAN N. O. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):983–995. [PubMed] [Google Scholar]
- LIGHTBOWN J. W., JACKSON F. L. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J. 1956 May;63(1):130–137. doi: 10.1042/bj0630130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGER J. A TPNH-linked reductase and its relation to hydroxylamine reductase in Enterobacteriaceae. Biochim Biophys Acta. 1960 Jul 15;41:553–555. doi: 10.1016/0006-3002(60)90065-2. [DOI] [PubMed] [Google Scholar]
- MAHLER H. R., MACKLER B., GREEN D. E. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J Biol Chem. 1954 Sep;210(1):465–480. [PubMed] [Google Scholar]
- MEDINA A., DE HEREDIA C. F. Vitamin K-dependent nitrate reductase in Escherichia coli. Biochim Biophys Acta. 1958 May;28(2):452–453. doi: 10.1016/0006-3002(58)90503-1. [DOI] [PubMed] [Google Scholar]
- MEDINA A., NICHOLAS D. J. Metallo-enzymes in the reduction of nitrite to ammonia in Neurospora. Biochim Biophys Acta. 1957 Jul;25(1):138–141. doi: 10.1016/0006-3002(57)90430-4. [DOI] [PubMed] [Google Scholar]
- McNALL E. G., ATKINSON D. E. Nitrate reduction. II. Utilization of possible intermediates as nitrogen sources and as electron acceptors. J Bacteriol. 1957 Jul;74(1):60–66. doi: 10.1128/jb.74.1.60-66.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortenson L. E., Mower H. F., Carnahan J. E. III. NITROGEN FIXATION BY ENZYME PREPARATIONS. Bacteriol Rev. 1962 Mar;26(1):42–50. doi: 10.1128/br.26.1.42-50.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAJJAR V. A., ALLEN M. B. Formation of nitrogen, nitrous oxide, and nitric oxide by extracts of denitrifying bacteria. J Biol Chem. 1954 Jan;206(1):209–214. [PubMed] [Google Scholar]
- NASON A., ABRAHAM R. G., AVERBACH B. C. The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim Biophys Acta. 1954 Sep;15(1):159–161. doi: 10.1016/0006-3002(54)90118-3. [DOI] [PubMed] [Google Scholar]
- NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
- NASON A., TAKAHASHI H. Inorganic nitrogen metabolism. Annu Rev Microbiol. 1958;12:203–246. doi: 10.1146/annurev.mi.12.100158.001223. [DOI] [PubMed] [Google Scholar]
- NICHOLAS D. J., MEDINA A., JONES O. T. A nitrite reductase from Neurospora crassa. Biochim Biophys Acta. 1960 Jan 29;37:468–476. doi: 10.1016/0006-3002(60)90503-5. [DOI] [PubMed] [Google Scholar]
- NICHOLAS D. J., NASON A. Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J Bacteriol. 1955 May;69(5):580–583. doi: 10.1128/jb.69.5.580-583.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NICHOLAS D. J., NASON A. Mechanism of action of nitrate reductase from Neurospora. J Biol Chem. 1954 Nov;211(1):183–197. [PubMed] [Google Scholar]
- NICHOLAS D. J., NASON A. Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J Biol Chem. 1954 Mar;207(1):353–360. [PubMed] [Google Scholar]
- Nicholas D. J., Nason A. Role of Molybdenum as a Constituent of Nitrate Reductase from Soybean Leaves. Plant Physiol. 1955 Mar;30(2):135–138. doi: 10.1104/pp.30.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OMURA H. Intracellular behaviour of the nitrate reductase of animal tissues. Enzymologia. 1959 May 30;20(5):271–290. [PubMed] [Google Scholar]
- PICHINOTY F., D'ORNANO L. Inhibition by oxygen of biosynthesis and activity of nitrate-reductase in Aerobacter aerogenes. Nature. 1961 Aug 26;191:879–881. doi: 10.1038/191879a0. [DOI] [PubMed] [Google Scholar]
- PICHINOTY F., SENEZ J. C. Réactivation par le cytochrome c3 de l'hydroxylamine et de la nitrite-réductase des bactéries sulfatoréductrices. C R Seances Soc Biol Fil. 1956 Sep 10;150(4):744–745. [PubMed] [Google Scholar]
- PICHINOTY F., SENEZ J. C. [Extraction and properties of the nitrate reductase from Aerobacter aerogenes]. Biochim Biophys Acta. 1959 Oct;35:537–540. doi: 10.1016/0006-3002(59)90405-6. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R. Dependence of sulphate reduction and oxygen utilization on a cytochrome in Desulphovibrio. Biochem J. 1954 Jun 19;58(330TH):ix–ix. [PubMed] [Google Scholar]
- Proceedings of the Biochemical Society. Biochem J. 1954 Feb;56(2):xi–xviii. [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Stephenson M., Whetham M. D. Some Reactions of Resting Bacteria in Relation to Anaerobic Growth. Biochem J. 1925;19(2):304–317. doi: 10.1042/bj0190304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAW I. Isolation of a cytochrome of the antimycin A sensitive pathway for DPNH oxidation. Experientia. 1956 Sep 15;12(9):348–349. doi: 10.1007/BF02165346. [DOI] [PubMed] [Google Scholar]
- RICHERT D. A., WESTERFELD W. W. Isolation and identification of the xanthine oxidase factor as molybdenum. J Biol Chem. 1953 Aug;203(2):915–923. [PubMed] [Google Scholar]
- ROSENBERGER R. F., KOGUT M. The influence of growth rate and aeration on the respiratory and cytochrome system of fluorescent pseudomonad grown in continuous culture. J Gen Microbiol. 1958 Oct;19(2):228–243. doi: 10.1099/00221287-19-2-228. [DOI] [PubMed] [Google Scholar]
- ROUSSOS G. G., NASON A. Pyridine nucleotide-nitrite and-hydroxylamine enzymes from soybean leaves. J Biol Chem. 1960 Oct;235:2997–3007. [PubMed] [Google Scholar]
- ROUSSOS G. G., TAKAHASHI H., NASON A. Reevaluation of ammonium dehydrogenase. J Bacteriol. 1957 Apr;73(4):594–595. doi: 10.1128/jb.73.4.594-595.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SACKS L. E., BARKER H. A. Substrate oxidation and nitrous oxide utilization in denitrification. J Bacteriol. 1952 Aug;64(2):247–252. doi: 10.1128/jb.64.2.247-252.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SADANA J. C., MCELROY W. D. Nitrate reductase from Achromobacter fischeri; purification and properties: function of flavines and cytochrome. Arch Biochem Biophys. 1957 Mar;67(1):16–34. doi: 10.1016/0003-9861(57)90242-4. [DOI] [PubMed] [Google Scholar]
- SAN PIETRO A., LANG H. M. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958 Mar;231(1):211–229. [PubMed] [Google Scholar]
- SENEZ J. C., PICHINOTY F., KONOVALTCHIKOFF-MAZOYER M. Réduction des nitrites et de l'hydroxylamine par les suspensions et les extraits de Desulfovibrio desulfuricans. C R Hebd Seances Acad Sci. 1956 Jan 23;242(4):570–573. [PubMed] [Google Scholar]
- SENEZ J. C., PICHINOTY F. Reduction de l'hydroxylamine liée à l'activité de l'hydrogénase de Desulfovibrio desulfuricans. I. Activité des cellules et des extraits. Biochim Biophys Acta. 1958 Mar;27(3):569–580. doi: 10.1016/0006-3002(58)90388-3. [DOI] [PubMed] [Google Scholar]
- SENEZ J. C., PICHINOTY F. Reduction de l'hydroxylamine liée à l'activité de l'hydrogénase de Desulfovibrio desulfuricans. Il. Nature du système enzymatique et du transporteur d'électrons intervenant dans la réaction. Biochim Biophys Acta. 1958 May;28(2):355–369. doi: 10.1016/0006-3002(58)90483-9. [DOI] [PubMed] [Google Scholar]
- SILVER W. S., McELROY W. D. Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch Biochem Biophys. 1954 Aug;51(2):379–394. doi: 10.1016/0003-9861(54)90493-2. [DOI] [PubMed] [Google Scholar]
- SILVER W. S. Pyridine nucleotidenitrate reductase from Hansenula anomala a nitrate reducing yeast. J Bacteriol. 1957 Feb;73(2):241–246. doi: 10.1128/jb.73.2.241-246.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPENCER D., TAKAHASHI H., NASON A. Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in Azotobacter agile. J Bacteriol. 1957 Apr;73(4):553–562. doi: 10.1128/jb.73.4.553-562.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOY V. Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim Biophys Acta. 1956 Aug;21(2):395–396. doi: 10.1016/0006-3002(56)90036-1. [DOI] [PubMed] [Google Scholar]
- TANIGUCHI S., ITAGAKI E. Nitrate reductase of nitrate respiration type from E. coli. I. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein. Biochim Biophys Acta. 1960 Nov 4;44:263–279. doi: 10.1016/0006-3002(60)91562-6. [DOI] [PubMed] [Google Scholar]
- TANIGUCHI S., ITAGAKI E. Solubilization and purification of particulate nitrate reductase of anaerobically grown Escherichia coli. Biochim Biophys Acta. 1959 Jan;31(1):294–295. doi: 10.1016/0006-3002(59)90485-8. [DOI] [PubMed] [Google Scholar]
- VAIDYANATHAN C. S., STREET H. E. Nitrate reduction by aqueous extracts of excised tomato roots. Nature. 1959 Aug 15;184:531–533. doi: 10.1038/184531a0. [DOI] [PubMed] [Google Scholar]
- VAN NIEL C. B., ALLEN M. B., WRIGHT B. E. On the photochemical reduction of nitrate by algae. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):67–74. doi: 10.1016/0006-3002(53)90124-3. [DOI] [PubMed] [Google Scholar]
- Vanecko S., Varner J. E. Studies on Nitrite Metabolism in Higher Plants. Plant Physiol. 1955 Jul;30(4):388–390. doi: 10.1104/pp.30.4.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WAINWRIGHT S. D. Menadione derivatives and ferrous iron as cofactors of the nitrate reductase system of a coliform organism. Biochim Biophys Acta. 1955 Dec;18(4):583–585. doi: 10.1016/0006-3002(55)90162-1. [DOI] [PubMed] [Google Scholar]
- WAINWRIGHT S. D., NEVILL A. The influence of depletion of nitrogenous reserves upon the phenomenon of induced enzyme biosynthesis in cells of Escherichia coli. J Gen Microbiol. 1956 Feb;14(1):47–56. doi: 10.1099/00221287-14-1-47. [DOI] [PubMed] [Google Scholar]
- WALKER G. C., NICHOLAS D. J. An iron requirement for a dissimilatory nitrate reductase in Neurospora crassa. Nature. 1961 Jan 14;189:141–142. doi: 10.1038/189141a0. [DOI] [PubMed] [Google Scholar]
- WALKER G. C., NICHOLAS D. J. Hydroxylamine reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:361–368. doi: 10.1016/0006-3002(61)90135-4. [DOI] [PubMed] [Google Scholar]
- WALKER G. C., NICHOLAS D. J. Nitrite reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:350–360. doi: 10.1016/0006-3002(61)90134-2. [DOI] [PubMed] [Google Scholar]
- WOSILAIT W. D., NASON A. Pyridine nucleotide-menadione reductase from Escherichia coli. J Biol Chem. 1954 Jun;208(2):785–798. [PubMed] [Google Scholar]
- YAMANAKA T., OTA A., OKUNUKI K. Nitrite reductase activity of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1960 Nov 4;44:397–398. doi: 10.1016/0006-3002(60)91593-6. [DOI] [PubMed] [Google Scholar]
- ZUCKER M., NASON A. A pyridine nucleotide-hydroxylamine reductase from Neurospora. J Biol Chem. 1955 Mar;213(1):463–478. [PubMed] [Google Scholar]