Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1962 Mar;26(1):16–41. doi: 10.1128/br.26.1.16-41.1962

II. ENZYMATIC PATHWAYS OF NITRATE, NITRITE, AND HYDROXYLAMINE METABOLISMS2

Alvin Nason a
PMCID: PMC441134  PMID: 14478459

Full text

PDF
16

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEEM M. I., ALEXANDER M. Cell-free nitrification by Nitrobacter. J Bacteriol. 1958 Nov;76(5):510–514. doi: 10.1128/jb.76.5.510-514.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLEN M. B., VAN NIEL C. B. Experiments on bacterial denitrification. J Bacteriol. 1952 Sep;64(3):397–412. doi: 10.1128/jb.64.3.397-412.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ASNIS R. E., GLICK M. C., VELY V. G. Some enzymatic activities of a particulate fraction from sonic lysates of Escherichia coli. J Bacteriol. 1956 Sep;72(3):314–319. doi: 10.1128/jb.72.3.314-319.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ATKINSON D. E., MCNALL E. G. Nitrate reduction. I. Growth of Escherichia coli with nitrate as sole source of nitrogen. J Bacteriol. 1956 Aug;72(2):226–229. doi: 10.1128/jb.72.2.226-229.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aleem M. I., Nason A. PHOSPHORYLATION COUPLED TO NITRITE OXIDATION BY PARTICLES FROM THE CHEMOAUTOTROPH, NITROBACTER AGILIS. Proc Natl Acad Sci U S A. 1960 Jun;46(6):763–769. doi: 10.1073/pnas.46.6.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BAALSRUD K., BAALSRUD K. S. Studies on Thiobacillus denitrificans. Arch Mikrobiol. 1954;20(1):34–62. doi: 10.1007/BF00412265. [DOI] [PubMed] [Google Scholar]
  7. Bernheim F., Dixon M. The reduction of nitrates in animal tissues. Biochem J. 1928;22(1):125–134. doi: 10.1042/bj0220125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CHAUDHARY M. T., WILSON T. G., ROBERTS E. R. Studies in the biological fixation of nitrogen. II. Inhibition in Azotobacter vinelandii by hyponitrous acid. Biochim Biophys Acta. 1954 Aug;14(4):507–513. doi: 10.1016/0006-3002(54)90231-0. [DOI] [PubMed] [Google Scholar]
  9. CHENIAE G. M., EVANS H. L. On the relation between nitrogen fixation and nodule nitrate reductase of soybean root nodules. Biochim Biophys Acta. 1957 Dec;26(3):654–655. doi: 10.1016/0006-3002(57)90122-1. [DOI] [PubMed] [Google Scholar]
  10. CHENIAE G., EVANS H. J. Properties of a particulate nitrate reductase from the nodules of the soybean plant. Biochim Biophys Acta. 1959 Sep;35:140–153. doi: 10.1016/0006-3002(59)90343-9. [DOI] [PubMed] [Google Scholar]
  11. CHUNG C. W., NAJJAR V. A. Cofactor requirements for enzymatic denitrification. I. Nitrite reductase. J Biol Chem. 1956 Feb;218(2):617–625. [PubMed] [Google Scholar]
  12. CHUNG C. W., NAJJAR V. A. Cofactor requirements for enzymatic denitrification. II. Nitric oxide reductase. J Biol Chem. 1956 Feb;218(2):627–632. [PubMed] [Google Scholar]
  13. COLTER J. S., QUASTEL J. H. Catalytic decomposition of hydroxylamine by hemoglobin. Arch Biochem. 1950 Jul;27(2):368–389. [PubMed] [Google Scholar]
  14. CRESSWELL C. F., HEWITT E. J. Oxidation of hydroxylamine by plant enzyme systems. Biochem Biophys Res Commun. 1960 Nov;3:544–548. doi: 10.1016/0006-291x(60)90172-8. [DOI] [PubMed] [Google Scholar]
  15. Candela M. I., Fisher E. G., Hewitt E. J. Molybdenum as a Plant Nutrient. X. Some Factors Affecting the Activity of Nitrate Reductase in Cauliflower Plants Grown with Different Nitrogen Sources and Molybdenum Levels in Sand Culture. Plant Physiol. 1957 Jul;32(4):280–288. doi: 10.1104/pp.32.4.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cheniae G., Evans H. J. Physiological Studies on Nodule-Nitrate Reductase. Plant Physiol. 1960 Jul;35(4):454–462. doi: 10.1104/pp.35.4.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DE RENZO E. C., KALEITA E., HEYTLER P. G., OLESON J. J., HUTCHINGS B. L., WILLIAMS J. H. Identification of the xanthine oxidase factor as molybdenum. Arch Biochem Biophys. 1953 Aug;45(2):247–253. doi: 10.1016/s0003-9861(53)80001-9. [DOI] [PubMed] [Google Scholar]
  18. EGAMI F., HAYASE Y., TANIGUCHI S. [Attempted induction of nitrate reducase in an auxotrophic Escherichia coli mutant by hemin]. Ann Inst Pasteur (Paris) 1960 Mar;98:429–438. [PubMed] [Google Scholar]
  19. Evans H. J., Hall N. S. Association of Molybdenum with Nitrate Reductase from Soybean Leaves. Science. 1955 Nov 11;122(3176):922–923. doi: 10.1126/science.122.3176.922. [DOI] [PubMed] [Google Scholar]
  20. Evans H. J., Nason A. Pyridine Nucleotide-Nitrate Reductase from Extracts of Higher Plants. Plant Physiol. 1953 Apr;28(2):233–254. doi: 10.1104/pp.28.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. FARKAS-HIMSLEY H., ARTMAN M. Studies on nitrate reduction by Escherichia coli. J Bacteriol. 1957 Nov;74(5):690–692. doi: 10.1128/jb.74.5.690-692.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. FEWSON C. A., NICHOLAS D. J. Nitrate reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:335–349. doi: 10.1016/0006-3002(61)90133-0. [DOI] [PubMed] [Google Scholar]
  23. FEWSON C. A., NICHOLAS D. J. Utilization of nitric oxide by micro-organisms and higher plants. Nature. 1960 Dec 3;188:794–796. doi: 10.1038/188794a0. [DOI] [PubMed] [Google Scholar]
  24. Frear D. S., Burrell R. C. The Assimilation of N-from Labeled Hyponitrite by Soybean Leaves. Plant Physiol. 1958 Mar;33(2):105–109. doi: 10.1104/pp.33.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. HEREDIA C. F., MEDINA A. Nitrate reductase and related enzymes in Escherichia coli. Biochem J. 1960 Oct;77:24–30. doi: 10.1042/bj0770024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hageman R. H., Flesher D. Nitrate Reductase Activity in Corn Seedlings as Affected by Light and Nitrate Content of Nutrient Media. Plant Physiol. 1960 Sep;35(5):700–708. doi: 10.1104/pp.35.5.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. IIDA C., YAMASAKI K. Spectrographic determination of molybdenum in the nitrate reductase from Escherichia coli. Biochim Biophys Acta. 1960 Nov 4;44:352–353. doi: 10.1016/0006-3002(60)91572-9. [DOI] [PubMed] [Google Scholar]
  28. IMSHENETSKII A. A., RUBAN E. L., ARTEMOVA L. I. Beskletochnaia nitrifikatsiia. IV. Ob inaktivatsii vysokoi temperaturoi fermentov Nitrosomonas europea, okisliaiushchikh ammiak. Mikrobiologiia. 1956 Jan-Feb;25(1):12–15. [PubMed] [Google Scholar]
  29. IMSHENETSKII A. A., RUBAN E. L., BUZINA O. D. Beskletochnaia nitrifikatsiia. III. O dinamike nakopleniia nitritov. Mikrobiologiia. 1955 Sep-Oct;24(5):539–544. [PubMed] [Google Scholar]
  30. KENTEN R. H., MANN P. J. G. The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochem J. 1953 Feb;53(3):498–505. doi: 10.1042/bj0530498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. KENTEN R. H., MANN P. J. G. The oxidation of manganese by enzyme systems. Biochem J. 1952 Sep;52(1):125–130. doi: 10.1042/bj0520125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. KESSLER E. Reduction of nitrite with molecular hydrogen in Algae containing hydrogenase. Arch Biochem Biophys. 1956 May;62(1):241–242. doi: 10.1016/0003-9861(56)90110-2. [DOI] [PubMed] [Google Scholar]
  33. KINSKY S. C., McELROY W. D. Neurospora nitrate reductase: the role of phosphate flavine and cytochrome c reductase. Arch Biochem Biophys. 1958 Feb;73(2):466–483. doi: 10.1016/0003-9861(58)90290-x. [DOI] [PubMed] [Google Scholar]
  34. KLAUSMEIER R. E., BARD R. C. Ammonium dehydrogenase. J Bacteriol. 1954 Jul;68(1):129–130. doi: 10.1128/jb.68.1.129-130.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. KLUYVER A. J., VERHOEVEN W. Studies on true dissimilatory nitrate reduction. II. The mechanism of denitrification. Antonie Van Leeuwenhoek. 1954;20(3):241–262. doi: 10.1007/BF02543727. [DOI] [PubMed] [Google Scholar]
  36. KONO M., TANIGUCHI S. Hydroxylamine reductase of a halotolerant Micrococcus. Biochim Biophys Acta. 1960 Oct 7;43:419–430. doi: 10.1016/0006-3002(60)90466-2. [DOI] [PubMed] [Google Scholar]
  37. Krasna A. I., Rittenberg D. A COMPARISON OF THE HYDROGENASE ACTIVITIES OF DIFFERENT MICROORGANISMS. Proc Natl Acad Sci U S A. 1956 Apr;42(4):180–185. doi: 10.1073/pnas.42.4.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. LAZZARINI R. A., ATKINSON D. E. A triphosphopyridine nucleotide-specific nitrite reductase from Escherichia coli. J Biol Chem. 1961 Dec;236:3330–3335. [PubMed] [Google Scholar]
  39. LENHOFF H. M., NICHOLAS D. J., KAPLAN N. O. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):983–995. [PubMed] [Google Scholar]
  40. LIGHTBOWN J. W., JACKSON F. L. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J. 1956 May;63(1):130–137. doi: 10.1042/bj0630130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. MAGER J. A TPNH-linked reductase and its relation to hydroxylamine reductase in Enterobacteriaceae. Biochim Biophys Acta. 1960 Jul 15;41:553–555. doi: 10.1016/0006-3002(60)90065-2. [DOI] [PubMed] [Google Scholar]
  42. MAHLER H. R., MACKLER B., GREEN D. E. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J Biol Chem. 1954 Sep;210(1):465–480. [PubMed] [Google Scholar]
  43. MEDINA A., DE HEREDIA C. F. Vitamin K-dependent nitrate reductase in Escherichia coli. Biochim Biophys Acta. 1958 May;28(2):452–453. doi: 10.1016/0006-3002(58)90503-1. [DOI] [PubMed] [Google Scholar]
  44. MEDINA A., NICHOLAS D. J. Metallo-enzymes in the reduction of nitrite to ammonia in Neurospora. Biochim Biophys Acta. 1957 Jul;25(1):138–141. doi: 10.1016/0006-3002(57)90430-4. [DOI] [PubMed] [Google Scholar]
  45. McNALL E. G., ATKINSON D. E. Nitrate reduction. II. Utilization of possible intermediates as nitrogen sources and as electron acceptors. J Bacteriol. 1957 Jul;74(1):60–66. doi: 10.1128/jb.74.1.60-66.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Mortenson L. E., Mower H. F., Carnahan J. E. III. NITROGEN FIXATION BY ENZYME PREPARATIONS. Bacteriol Rev. 1962 Mar;26(1):42–50. doi: 10.1128/br.26.1.42-50.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. NAJJAR V. A., ALLEN M. B. Formation of nitrogen, nitrous oxide, and nitric oxide by extracts of denitrifying bacteria. J Biol Chem. 1954 Jan;206(1):209–214. [PubMed] [Google Scholar]
  48. NASON A., ABRAHAM R. G., AVERBACH B. C. The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim Biophys Acta. 1954 Sep;15(1):159–161. doi: 10.1016/0006-3002(54)90118-3. [DOI] [PubMed] [Google Scholar]
  49. NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
  50. NASON A., TAKAHASHI H. Inorganic nitrogen metabolism. Annu Rev Microbiol. 1958;12:203–246. doi: 10.1146/annurev.mi.12.100158.001223. [DOI] [PubMed] [Google Scholar]
  51. NICHOLAS D. J., MEDINA A., JONES O. T. A nitrite reductase from Neurospora crassa. Biochim Biophys Acta. 1960 Jan 29;37:468–476. doi: 10.1016/0006-3002(60)90503-5. [DOI] [PubMed] [Google Scholar]
  52. NICHOLAS D. J., NASON A. Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J Bacteriol. 1955 May;69(5):580–583. doi: 10.1128/jb.69.5.580-583.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. NICHOLAS D. J., NASON A. Mechanism of action of nitrate reductase from Neurospora. J Biol Chem. 1954 Nov;211(1):183–197. [PubMed] [Google Scholar]
  54. NICHOLAS D. J., NASON A. Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J Biol Chem. 1954 Mar;207(1):353–360. [PubMed] [Google Scholar]
  55. Nicholas D. J., Nason A. Role of Molybdenum as a Constituent of Nitrate Reductase from Soybean Leaves. Plant Physiol. 1955 Mar;30(2):135–138. doi: 10.1104/pp.30.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. OMURA H. Intracellular behaviour of the nitrate reductase of animal tissues. Enzymologia. 1959 May 30;20(5):271–290. [PubMed] [Google Scholar]
  57. PICHINOTY F., D'ORNANO L. Inhibition by oxygen of biosynthesis and activity of nitrate-reductase in Aerobacter aerogenes. Nature. 1961 Aug 26;191:879–881. doi: 10.1038/191879a0. [DOI] [PubMed] [Google Scholar]
  58. PICHINOTY F., SENEZ J. C. Réactivation par le cytochrome c3 de l'hydroxylamine et de la nitrite-réductase des bactéries sulfatoréductrices. C R Seances Soc Biol Fil. 1956 Sep 10;150(4):744–745. [PubMed] [Google Scholar]
  59. PICHINOTY F., SENEZ J. C. [Extraction and properties of the nitrate reductase from Aerobacter aerogenes]. Biochim Biophys Acta. 1959 Oct;35:537–540. doi: 10.1016/0006-3002(59)90405-6. [DOI] [PubMed] [Google Scholar]
  60. POSTGATE J. R. Dependence of sulphate reduction and oxygen utilization on a cytochrome in Desulphovibrio. Biochem J. 1954 Jun 19;58(330TH):ix–ix. [PubMed] [Google Scholar]
  61. Proceedings of the Biochemical Society. Biochem J. 1954 Feb;56(2):xi–xviii. [PMC free article] [PubMed] [Google Scholar]
  62. Quastel J. H., Stephenson M., Whetham M. D. Some Reactions of Resting Bacteria in Relation to Anaerobic Growth. Biochem J. 1925;19(2):304–317. doi: 10.1042/bj0190304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. RAW I. Isolation of a cytochrome of the antimycin A sensitive pathway for DPNH oxidation. Experientia. 1956 Sep 15;12(9):348–349. doi: 10.1007/BF02165346. [DOI] [PubMed] [Google Scholar]
  64. RICHERT D. A., WESTERFELD W. W. Isolation and identification of the xanthine oxidase factor as molybdenum. J Biol Chem. 1953 Aug;203(2):915–923. [PubMed] [Google Scholar]
  65. ROSENBERGER R. F., KOGUT M. The influence of growth rate and aeration on the respiratory and cytochrome system of fluorescent pseudomonad grown in continuous culture. J Gen Microbiol. 1958 Oct;19(2):228–243. doi: 10.1099/00221287-19-2-228. [DOI] [PubMed] [Google Scholar]
  66. ROUSSOS G. G., NASON A. Pyridine nucleotide-nitrite and-hydroxylamine enzymes from soybean leaves. J Biol Chem. 1960 Oct;235:2997–3007. [PubMed] [Google Scholar]
  67. ROUSSOS G. G., TAKAHASHI H., NASON A. Reevaluation of ammonium dehydrogenase. J Bacteriol. 1957 Apr;73(4):594–595. doi: 10.1128/jb.73.4.594-595.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. SACKS L. E., BARKER H. A. Substrate oxidation and nitrous oxide utilization in denitrification. J Bacteriol. 1952 Aug;64(2):247–252. doi: 10.1128/jb.64.2.247-252.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. SADANA J. C., MCELROY W. D. Nitrate reductase from Achromobacter fischeri; purification and properties: function of flavines and cytochrome. Arch Biochem Biophys. 1957 Mar;67(1):16–34. doi: 10.1016/0003-9861(57)90242-4. [DOI] [PubMed] [Google Scholar]
  70. SAN PIETRO A., LANG H. M. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958 Mar;231(1):211–229. [PubMed] [Google Scholar]
  71. SENEZ J. C., PICHINOTY F., KONOVALTCHIKOFF-MAZOYER M. Réduction des nitrites et de l'hydroxylamine par les suspensions et les extraits de Desulfovibrio desulfuricans. C R Hebd Seances Acad Sci. 1956 Jan 23;242(4):570–573. [PubMed] [Google Scholar]
  72. SENEZ J. C., PICHINOTY F. Reduction de l'hydroxylamine liée à l'activité de l'hydrogénase de Desulfovibrio desulfuricans. I. Activité des cellules et des extraits. Biochim Biophys Acta. 1958 Mar;27(3):569–580. doi: 10.1016/0006-3002(58)90388-3. [DOI] [PubMed] [Google Scholar]
  73. SENEZ J. C., PICHINOTY F. Reduction de l'hydroxylamine liée à l'activité de l'hydrogénase de Desulfovibrio desulfuricans. Il. Nature du système enzymatique et du transporteur d'électrons intervenant dans la réaction. Biochim Biophys Acta. 1958 May;28(2):355–369. doi: 10.1016/0006-3002(58)90483-9. [DOI] [PubMed] [Google Scholar]
  74. SILVER W. S., McELROY W. D. Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch Biochem Biophys. 1954 Aug;51(2):379–394. doi: 10.1016/0003-9861(54)90493-2. [DOI] [PubMed] [Google Scholar]
  75. SILVER W. S. Pyridine nucleotidenitrate reductase from Hansenula anomala a nitrate reducing yeast. J Bacteriol. 1957 Feb;73(2):241–246. doi: 10.1128/jb.73.2.241-246.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. SPENCER D., TAKAHASHI H., NASON A. Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in Azotobacter agile. J Bacteriol. 1957 Apr;73(4):553–562. doi: 10.1128/jb.73.4.553-562.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. STOY V. Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim Biophys Acta. 1956 Aug;21(2):395–396. doi: 10.1016/0006-3002(56)90036-1. [DOI] [PubMed] [Google Scholar]
  78. TANIGUCHI S., ITAGAKI E. Nitrate reductase of nitrate respiration type from E. coli. I. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein. Biochim Biophys Acta. 1960 Nov 4;44:263–279. doi: 10.1016/0006-3002(60)91562-6. [DOI] [PubMed] [Google Scholar]
  79. TANIGUCHI S., ITAGAKI E. Solubilization and purification of particulate nitrate reductase of anaerobically grown Escherichia coli. Biochim Biophys Acta. 1959 Jan;31(1):294–295. doi: 10.1016/0006-3002(59)90485-8. [DOI] [PubMed] [Google Scholar]
  80. VAIDYANATHAN C. S., STREET H. E. Nitrate reduction by aqueous extracts of excised tomato roots. Nature. 1959 Aug 15;184:531–533. doi: 10.1038/184531a0. [DOI] [PubMed] [Google Scholar]
  81. VAN NIEL C. B., ALLEN M. B., WRIGHT B. E. On the photochemical reduction of nitrate by algae. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):67–74. doi: 10.1016/0006-3002(53)90124-3. [DOI] [PubMed] [Google Scholar]
  82. Vanecko S., Varner J. E. Studies on Nitrite Metabolism in Higher Plants. Plant Physiol. 1955 Jul;30(4):388–390. doi: 10.1104/pp.30.4.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. WAINWRIGHT S. D. Menadione derivatives and ferrous iron as cofactors of the nitrate reductase system of a coliform organism. Biochim Biophys Acta. 1955 Dec;18(4):583–585. doi: 10.1016/0006-3002(55)90162-1. [DOI] [PubMed] [Google Scholar]
  84. WAINWRIGHT S. D., NEVILL A. The influence of depletion of nitrogenous reserves upon the phenomenon of induced enzyme biosynthesis in cells of Escherichia coli. J Gen Microbiol. 1956 Feb;14(1):47–56. doi: 10.1099/00221287-14-1-47. [DOI] [PubMed] [Google Scholar]
  85. WALKER G. C., NICHOLAS D. J. An iron requirement for a dissimilatory nitrate reductase in Neurospora crassa. Nature. 1961 Jan 14;189:141–142. doi: 10.1038/189141a0. [DOI] [PubMed] [Google Scholar]
  86. WALKER G. C., NICHOLAS D. J. Hydroxylamine reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:361–368. doi: 10.1016/0006-3002(61)90135-4. [DOI] [PubMed] [Google Scholar]
  87. WALKER G. C., NICHOLAS D. J. Nitrite reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:350–360. doi: 10.1016/0006-3002(61)90134-2. [DOI] [PubMed] [Google Scholar]
  88. WOSILAIT W. D., NASON A. Pyridine nucleotide-menadione reductase from Escherichia coli. J Biol Chem. 1954 Jun;208(2):785–798. [PubMed] [Google Scholar]
  89. YAMANAKA T., OTA A., OKUNUKI K. Nitrite reductase activity of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1960 Nov 4;44:397–398. doi: 10.1016/0006-3002(60)91593-6. [DOI] [PubMed] [Google Scholar]
  90. ZUCKER M., NASON A. A pyridine nucleotide-hydroxylamine reductase from Neurospora. J Biol Chem. 1955 Mar;213(1):463–478. [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES