Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1962 Mar;26(1):67–94. doi: 10.1128/br.26.1.67-94.1962

V. COMPARATIVE METABOLISM OF INORGANIC SULFUR COMPOUNDS IN MICROORGANISMS

H D Peck Jr a
PMCID: PMC441137  PMID: 14484819

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS M. E., POSTGATE J. R. A new sulphate-reducing vibrio. J Gen Microbiol. 1959 Apr;20(2):252–257. doi: 10.1099/00221287-20-2-252. [DOI] [PubMed] [Google Scholar]
  2. ARTMAN M. The production of hydrogen sulphide from thiosulphate by Escherichia coli. J Gen Microbiol. 1956 Apr;14(2):315–322. doi: 10.1099/00221287-14-2-315. [DOI] [PubMed] [Google Scholar]
  3. BAALSRUD K., BAALSRUD K. S. Studies on Thiobacillus denitrificans. Arch Mikrobiol. 1954;20(1):34–62. doi: 10.1007/BF00412265. [DOI] [PubMed] [Google Scholar]
  4. BAXTER C. F., VAN REEN R., PEARSON P. B., ROSENBERG C. Sulfide oxidation in rat tissues. Biochim Biophys Acta. 1958 Mar;27(3):584–591. doi: 10.1016/0006-3002(58)90390-1. [DOI] [PubMed] [Google Scholar]
  5. BAXTER C. F., VAN REEN R. Some aspects of sulfide oxidation by rat-liver preparations. Biochim Biophys Acta. 1958 Jun;28(3):567–573. doi: 10.1016/0006-3002(58)90520-1. [DOI] [PubMed] [Google Scholar]
  6. BAXTER C. F., VAN REEN R. The oxidation of sulfide to thiosulfate by metalloprotein complexes and by ferritin. Biochim Biophys Acta. 1958 Jun;28(3):573–578. doi: 10.1016/0006-3002(58)90521-3. [DOI] [PubMed] [Google Scholar]
  7. BROMFIELD S. M. Sulphate reduction in partially sterilized soil exposed to air. J Gen Microbiol. 1953 Jun;8(3):378–390. doi: 10.1099/00221287-8-3-378. [DOI] [PubMed] [Google Scholar]
  8. CAMPBELL L. L., Jr, FRANK H. A., HALL E. R. Studies on thermophilic sulfate reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. J Bacteriol. 1957 Apr;73(4):516–521. doi: 10.1128/jb.73.4.516-521.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CHAPEVILLE F., FROMAGEOT P. Formation de sulfite, d'acide cystéique et de taurine à partir de sulfate par l'oeuf embryonné. Biochim Biophys Acta. 1957 Dec;26(3):538–558. doi: 10.1016/0006-3002(57)90102-6. [DOI] [PubMed] [Google Scholar]
  10. CLARKE P. H. Hydrogen sulphide production by bacteria. J Gen Microbiol. 1953 Jun;8(3):397–407. doi: 10.1099/00221287-8-3-397. [DOI] [PubMed] [Google Scholar]
  11. CLOWES R. C. Nutritional studies of cysteineless mutants of Salmonella typhimurium. J Gen Microbiol. 1958 Feb;18(1):140–153. doi: 10.1099/00221287-18-1-140. [DOI] [PubMed] [Google Scholar]
  12. COBEY F. A., HANDLER P. Sulfite metabolism in E. coli. Biochim Biophys Acta. 1956 Feb;19(2):324–327. doi: 10.1016/0006-3002(56)90435-8. [DOI] [PubMed] [Google Scholar]
  13. COLEMAN G. S. A sulphate-reducing bacterium from the sheep rumen. J Gen Microbiol. 1960 Apr;22:423–436. doi: 10.1099/00221287-22-2-423. [DOI] [PubMed] [Google Scholar]
  14. COWIE D. B., BOLTON E. T., SANDS M. K. Sulfur metabolism in Escherichia coli. II. Competitive utilization of labeled and nonlabeled sulfur compounds. J Bacteriol. 1951 Jul;62(1):63–74. doi: 10.1128/jb.62.1.63-74.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DZIEWIATKOWSKI D. D. Utilization of sulfate sulfur in the rat for the synthesis of cystine. J Biol Chem. 1954 Mar;207(1):181–186. [PubMed] [Google Scholar]
  16. FAUST L., WOLFE R. S. Enrichment and cultivation of Beggiatoa alba. J Bacteriol. 1961 Jan;81:99–106. doi: 10.1128/jb.81.1.99-106.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. FRANTZ I. D., Jr, FEIGELMAN H., WERNER A. S., SMYTHE M. P. Biosynthesis of seventeen amino acids labeled with C14. J Biol Chem. 1952 Mar;195(1):423–428. [PubMed] [Google Scholar]
  18. FRIDOVICH I., HANDLER P. The initial step in enzymatic sulfite oxidation. J Biol Chem. 1956 Nov;223(1):321–325. [PubMed] [Google Scholar]
  19. FUCHS A. R., BONDE G. J. The availability of sulphur for Clostridium perfringens and an examination of hydrogen sulphide production. J Gen Microbiol. 1957 Apr;16(2):330–340. doi: 10.1099/00221287-16-2-330. [DOI] [PubMed] [Google Scholar]
  20. GLEEN H., QUASTEL J. H. Sulphur metabolism in soil. Appl Microbiol. 1953 Mar;1(2):70–77. doi: 10.1128/am.1.2.70-77.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GREGORY J. D., ROBBINS P. W. Metabolism of sulfur compounds (sulfate metabolism). Annu Rev Biochem. 1960;29:347–364. doi: 10.1146/annurev.bi.29.070160.002023. [DOI] [PubMed] [Google Scholar]
  22. HARADA T., SPENCER B. Choline suphate in fungi. J Gen Microbiol. 1960 Apr;22:520–527. doi: 10.1099/00221287-22-2-520. [DOI] [PubMed] [Google Scholar]
  23. HAYWARD H. R., STADTMAN T. C. Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp. J Bacteriol. 1959 Oct;78:557–561. doi: 10.1128/jb.78.4.557-561.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. HAYWARD H. R., STADTMAN T. C. Anaerobic degradation of choline. II. Preparation and properties of cell-free extracts of Vibrio cholinicus. J Biol Chem. 1960 Feb;235:538–543. [PubMed] [Google Scholar]
  25. HENDLEY D. D. Endogenous fermentation in Thiorhodaceae. J Bacteriol. 1955 Dec;70(6):625–634. doi: 10.1128/jb.70.6.625-634.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. HILZ H., KITTLER M. Reduction of active sulfate (PAPS) by dihydrolipoic acid as substrate. Biochem Biophys Res Commun. 1960 Aug;3:140–142. doi: 10.1016/0006-291x(60)90209-6. [DOI] [PubMed] [Google Scholar]
  27. Hilz H., Lipmann F. THE ENZYMATIC ACTIVATION OF SULFATE. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):880–890. doi: 10.1073/pnas.41.11.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. ISHIMOTO M., YAGI T. Biochemical studies on sulfate-reducing bacteria. IX. Sulfite reductase. J Biochem. 1961 Feb;49:103–109. doi: 10.1093/oxfordjournals.jbchem.a127264. [DOI] [PubMed] [Google Scholar]
  29. JOHNSTONE K. I., TOWNSHEND M., WHITE D. Inter-species change in thiobacilli. J Gen Microbiol. 1961 Feb;24:201–206. doi: 10.1099/00221287-24-2-201. [DOI] [PubMed] [Google Scholar]
  30. KAJI A., GREGORY J. D. Mechanism of sulfurylation of choline. J Biol Chem. 1959 Nov;234:3007–3009. [PubMed] [Google Scholar]
  31. KAJI A., McELROY W. D. Mechanism of hydrogen sulfide formation from thiosulfate. J Bacteriol. 1959 May;77(5):630–637. doi: 10.1128/jb.77.5.630-637.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. KNIGHT B. C. J. G., PROOM H. A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. J Gen Microbiol. 1950 Sep;4(3):508–538. doi: 10.1099/00221287-4-3-508. [DOI] [PubMed] [Google Scholar]
  33. KRASNA A. I., RIKLIS E., RITTENBERG D. The purification and properties of the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2717–2720. [PubMed] [Google Scholar]
  34. LEES H. Energy metabolism in chemolithotropic bacteria. Annu Rev Microbiol. 1960;14:83–98. doi: 10.1146/annurev.mi.14.100160.000503. [DOI] [PubMed] [Google Scholar]
  35. LIPMANN F. Biological sulfate activation and transfer. Science. 1958 Sep 12;128(3324):575–580. doi: 10.1126/science.128.3324.575. [DOI] [PubMed] [Google Scholar]
  36. MAGER J. A TPNH-linked reductase and its relation to hydroxylamine reductase in Enterobacteriaceae. Biochim Biophys Acta. 1960 Jul 15;41:553–555. doi: 10.1016/0006-3002(60)90065-2. [DOI] [PubMed] [Google Scholar]
  37. MASSEY V. The identity of diaphorase and lipoyl dehydrogenase. Biochim Biophys Acta. 1960 Jan 15;37:314–322. doi: 10.1016/0006-3002(60)90239-0. [DOI] [PubMed] [Google Scholar]
  38. MECHALAS B. J., RITTENBERG S. C. Energy coupling in Desulfovibrio desulfuricans. J Bacteriol. 1960 Oct;80:501–507. doi: 10.1128/jb.80.4.501-507.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. MILHAUD G., AUBERT J. P., MILLET J. Role physiologique du cytochrome C de la bactérie chimioautotrophe Thiobacillus denitrificans. C R Hebd Seances Acad Sci. 1958 Mar 17;246(11):1766–1769. [PubMed] [Google Scholar]
  40. MILLET J. Le sulfite comme intermédiaire dans la réduction du sulfate par Desulfovibrio desulfuricans. C R Hebd Seances Acad Sci. 1955 Jan 10;240(2):253–255. [PubMed] [Google Scholar]
  41. NAKAMURA T., SATO R. Cysteine-S-sulphonate as an intermediate in microbiol synthesis of cysteine. Nature. 1960 Jan 16;185:163–164. doi: 10.1038/185163a0. [DOI] [PubMed] [Google Scholar]
  42. OLITZKI A. L. Hydrogen sulphide production by non-multiplying organisms and its inhibition by antibiotics. J Gen Microbiol. 1954 Oct;11(2):160–174. doi: 10.1099/00221287-11-2-160. [DOI] [PubMed] [Google Scholar]
  43. PARKER C. D., PRISK J. The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J Gen Microbiol. 1953 Jun;8(3):344–364. doi: 10.1099/00221287-8-3-344. [DOI] [PubMed] [Google Scholar]
  44. PECK H. D., Jr Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2734–2738. [PubMed] [Google Scholar]
  45. PECK H. D., Jr Evidence for the reversibility of the reaction catalyzed by adenosine 5'-phosphosulfate reductase. Biochim Biophys Acta. 1961 May 27;49:621–624. doi: 10.1016/0006-3002(61)90273-6. [DOI] [PubMed] [Google Scholar]
  46. POSTGATE J. R. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. doi: 10.1099/00221287-14-3-545. [DOI] [PubMed] [Google Scholar]
  47. POSTGATE J. R. Iron and the synthesis of cytochrome c3. J Gen Microbiol. 1956 Aug;15(1):186–193. doi: 10.1099/00221287-15-1-186. [DOI] [PubMed] [Google Scholar]
  48. POSTGATE J. R. The reduction of sulphur compounds by Desulphovibrio desulphuricans. J Gen Microbiol. 1951 Oct;5(4):725–738. doi: 10.1099/00221287-5-4-725. [DOI] [PubMed] [Google Scholar]
  49. POSTGATE J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature. 1959 Feb 14;183(4659):481–482. doi: 10.1038/183481b0. [DOI] [PubMed] [Google Scholar]
  50. POSTGATE J. The economic activities of sulphate-reducing bacteria. Prog Ind Microbiol. 1960;2:47–69. [PubMed] [Google Scholar]
  51. Peck H. D. ADENOSINE 5'-PHOSPHOSULFATE AS AN INTERMEDIATE IN THE OXIDATION OF THIOSULFATE BY THIOBACILLUS THIOPARUS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1053–1057. doi: 10.1073/pnas.46.8.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Pollock M. R., Knox R. Bacterial reduction of tetrathionate: A report to the medical research council. Biochem J. 1943 Oct;37(4):476–481. doi: 10.1042/bj0370476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. ROBBINS P. W., LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed] [Google Scholar]
  55. ROBBINS P. W., LIPMANN F. Separation of the two enzymatic phases in active sulfate synthesis. J Biol Chem. 1958 Sep;233(3):681–685. [PubMed] [Google Scholar]
  56. SADANA J. C., JAGANNATHAN V. Purification and properties of the hydrogenase of Desulfovibrio desulfuricans. Biochim Biophys Acta. 1956 Mar;19(3):440–452. doi: 10.1016/0006-3002(56)90467-x. [DOI] [PubMed] [Google Scholar]
  57. SADANA J. C., MOREY A. V. The purification of hydrogenase of Desulfovibrio desulfuricans. Biochim Biophys Acta. 1959 Apr;32:592–593. doi: 10.1016/0006-3002(59)90655-9. [DOI] [PubMed] [Google Scholar]
  58. SANTER M., BOYER J., SANTER U. Thiobacillus novellus. I. Growth on organic and inorganic media. J Bacteriol. 1959 Aug;78:197–202. doi: 10.1128/jb.78.2.197-202.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. SANTER M., MARGULIES M., KLINMAN N., KABACK R. Role of inorganic phosphate in thiosulfate metabolism by Thiobacillus thioparus. J Bacteriol. 1960 Mar;79:313–320. doi: 10.1128/jb.79.3.313-320.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. SCHULTZ A. S., McMANUS D. K. Amino acids and inorganic sulfur as sulfur source for the growth of yeasts. Arch Biochem. 1950 Feb;25(2):401–409. [PubMed] [Google Scholar]
  61. SELWYN S. C., POSTGATE J. R. A search for the rubentschikii group of Desulphovibrio. Antonie Van Leeuwenhoek. 1959;25:465–472. doi: 10.1007/BF02542870. [DOI] [PubMed] [Google Scholar]
  62. SENEZ J. C., PICHINOTY F. Sur la réduction du nitrite aux dépens de l'hydrogène moléculaire par Desulfovibrio desulfuricans et d'autres espèces bactériennes. Bull Soc Chim Biol (Paris) 1958;40(12):2099–2117. [PubMed] [Google Scholar]
  63. SENEZ J. Etude comparative de la croissance de Sporovibrio desulfuricans sur pyruvate et sur lactate de soude. Ann Inst Pasteur (Paris) 1951 Apr;80(4):395–408. [PubMed] [Google Scholar]
  64. SHEPHERD C. J. Pathways of cysteine synthesis in Aspergillus nidulans. J Gen Microbiol. 1956 Aug;15(1):29–38. doi: 10.1099/00221287-15-1-29. [DOI] [PubMed] [Google Scholar]
  65. SKARZYNSKI B., OSTROWSKI W. Incorporation of radioactive sulphur by Thiobacillus thioparus. Nature. 1958 Oct 4;182(4640):933–934. doi: 10.1038/182933b0. [DOI] [PubMed] [Google Scholar]
  66. SORBO B. On the mechanism of sulfide oxidation in biological systems. Biochim Biophys Acta. 1960 Feb 26;38:349–351. doi: 10.1016/0006-3002(60)91255-5. [DOI] [PubMed] [Google Scholar]
  67. SZCZEPKOWSKI T. W., SKARZYNSKI B. Biochemia samo1zywnych bakterii siarkowych. I. Układ cytochromowy i hemoproteidy Thiobacillus thioparus i Thiobacillus thiooxydans. Acta Microbiol Pol. 1952;1(2):93–106. [PubMed] [Google Scholar]
  68. Sluiter E. The production of hydrogen sulphide by animal tissues. Biochem J. 1930;24(2):549–563. doi: 10.1042/bj0240549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Spencer B., Harada T. The role of choline sulphate in the sulphur metabolism of fungi. Biochem J. 1960 Nov;77(2):305–315. doi: 10.1042/bj0770305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Starkey R. L. Formation of Sulfide by Some Sulfur Bacteria. J Bacteriol. 1937 May;33(5):545–571. doi: 10.1128/jb.33.5.545-571.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Suzuki I., Werkman C. H. GLUTATHIONE AND SULFUR OXIDATION BY THIOBACILLUS THIOOXIDANS. Proc Natl Acad Sci U S A. 1959 Feb;45(2):239–244. doi: 10.1073/pnas.45.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. TAGER J. M., RAUTANEN N. Sulphite oxidation by a plant mitochondrial system. I. Preliminary observations. Biochim Biophys Acta. 1955 Sep;18(1):111–121. doi: 10.1016/0006-3002(55)90014-7. [DOI] [PubMed] [Google Scholar]
  73. TRUDINGER P. A. Cytochromes and thiosulphate oxidation in an aerobic Thiobacillus. Biochim Biophys Acta. 1958 Oct;30(1):211–212. doi: 10.1016/0006-3002(58)90274-9. [DOI] [PubMed] [Google Scholar]
  74. TRUDINGER P. A. The initial products of thiosulphate oxidation by Thiobacillus X. Biochim Biophys Acta. 1959 Jan;31(1):270–272. doi: 10.1016/0006-3002(59)90474-3. [DOI] [PubMed] [Google Scholar]
  75. VAN NIEL C. B. Introductory remarks on the comparative biochemistry of micro-organisms. J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):11–38. doi: 10.1002/jcp.1030410404. [DOI] [PubMed] [Google Scholar]
  76. VISHNIAC W., SANTER M. The thiobacilli. Bacteriol Rev. 1957 Sep;21(3):195–213. doi: 10.1128/br.21.3.195-213.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES