Full text
PDF



























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS M. E., POSTGATE J. R. A new sulphate-reducing vibrio. J Gen Microbiol. 1959 Apr;20(2):252–257. doi: 10.1099/00221287-20-2-252. [DOI] [PubMed] [Google Scholar]
- ARTMAN M. The production of hydrogen sulphide from thiosulphate by Escherichia coli. J Gen Microbiol. 1956 Apr;14(2):315–322. doi: 10.1099/00221287-14-2-315. [DOI] [PubMed] [Google Scholar]
- BAALSRUD K., BAALSRUD K. S. Studies on Thiobacillus denitrificans. Arch Mikrobiol. 1954;20(1):34–62. doi: 10.1007/BF00412265. [DOI] [PubMed] [Google Scholar]
- BAXTER C. F., VAN REEN R., PEARSON P. B., ROSENBERG C. Sulfide oxidation in rat tissues. Biochim Biophys Acta. 1958 Mar;27(3):584–591. doi: 10.1016/0006-3002(58)90390-1. [DOI] [PubMed] [Google Scholar]
- BAXTER C. F., VAN REEN R. Some aspects of sulfide oxidation by rat-liver preparations. Biochim Biophys Acta. 1958 Jun;28(3):567–573. doi: 10.1016/0006-3002(58)90520-1. [DOI] [PubMed] [Google Scholar]
- BAXTER C. F., VAN REEN R. The oxidation of sulfide to thiosulfate by metalloprotein complexes and by ferritin. Biochim Biophys Acta. 1958 Jun;28(3):573–578. doi: 10.1016/0006-3002(58)90521-3. [DOI] [PubMed] [Google Scholar]
- BROMFIELD S. M. Sulphate reduction in partially sterilized soil exposed to air. J Gen Microbiol. 1953 Jun;8(3):378–390. doi: 10.1099/00221287-8-3-378. [DOI] [PubMed] [Google Scholar]
- CAMPBELL L. L., Jr, FRANK H. A., HALL E. R. Studies on thermophilic sulfate reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. J Bacteriol. 1957 Apr;73(4):516–521. doi: 10.1128/jb.73.4.516-521.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAPEVILLE F., FROMAGEOT P. Formation de sulfite, d'acide cystéique et de taurine à partir de sulfate par l'oeuf embryonné. Biochim Biophys Acta. 1957 Dec;26(3):538–558. doi: 10.1016/0006-3002(57)90102-6. [DOI] [PubMed] [Google Scholar]
- CLARKE P. H. Hydrogen sulphide production by bacteria. J Gen Microbiol. 1953 Jun;8(3):397–407. doi: 10.1099/00221287-8-3-397. [DOI] [PubMed] [Google Scholar]
- CLOWES R. C. Nutritional studies of cysteineless mutants of Salmonella typhimurium. J Gen Microbiol. 1958 Feb;18(1):140–153. doi: 10.1099/00221287-18-1-140. [DOI] [PubMed] [Google Scholar]
- COBEY F. A., HANDLER P. Sulfite metabolism in E. coli. Biochim Biophys Acta. 1956 Feb;19(2):324–327. doi: 10.1016/0006-3002(56)90435-8. [DOI] [PubMed] [Google Scholar]
- COLEMAN G. S. A sulphate-reducing bacterium from the sheep rumen. J Gen Microbiol. 1960 Apr;22:423–436. doi: 10.1099/00221287-22-2-423. [DOI] [PubMed] [Google Scholar]
- COWIE D. B., BOLTON E. T., SANDS M. K. Sulfur metabolism in Escherichia coli. II. Competitive utilization of labeled and nonlabeled sulfur compounds. J Bacteriol. 1951 Jul;62(1):63–74. doi: 10.1128/jb.62.1.63-74.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DZIEWIATKOWSKI D. D. Utilization of sulfate sulfur in the rat for the synthesis of cystine. J Biol Chem. 1954 Mar;207(1):181–186. [PubMed] [Google Scholar]
- FAUST L., WOLFE R. S. Enrichment and cultivation of Beggiatoa alba. J Bacteriol. 1961 Jan;81:99–106. doi: 10.1128/jb.81.1.99-106.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANTZ I. D., Jr, FEIGELMAN H., WERNER A. S., SMYTHE M. P. Biosynthesis of seventeen amino acids labeled with C14. J Biol Chem. 1952 Mar;195(1):423–428. [PubMed] [Google Scholar]
- FRIDOVICH I., HANDLER P. The initial step in enzymatic sulfite oxidation. J Biol Chem. 1956 Nov;223(1):321–325. [PubMed] [Google Scholar]
- FUCHS A. R., BONDE G. J. The availability of sulphur for Clostridium perfringens and an examination of hydrogen sulphide production. J Gen Microbiol. 1957 Apr;16(2):330–340. doi: 10.1099/00221287-16-2-330. [DOI] [PubMed] [Google Scholar]
- GLEEN H., QUASTEL J. H. Sulphur metabolism in soil. Appl Microbiol. 1953 Mar;1(2):70–77. doi: 10.1128/am.1.2.70-77.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREGORY J. D., ROBBINS P. W. Metabolism of sulfur compounds (sulfate metabolism). Annu Rev Biochem. 1960;29:347–364. doi: 10.1146/annurev.bi.29.070160.002023. [DOI] [PubMed] [Google Scholar]
- HARADA T., SPENCER B. Choline suphate in fungi. J Gen Microbiol. 1960 Apr;22:520–527. doi: 10.1099/00221287-22-2-520. [DOI] [PubMed] [Google Scholar]
- HAYWARD H. R., STADTMAN T. C. Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp. J Bacteriol. 1959 Oct;78:557–561. doi: 10.1128/jb.78.4.557-561.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAYWARD H. R., STADTMAN T. C. Anaerobic degradation of choline. II. Preparation and properties of cell-free extracts of Vibrio cholinicus. J Biol Chem. 1960 Feb;235:538–543. [PubMed] [Google Scholar]
- HENDLEY D. D. Endogenous fermentation in Thiorhodaceae. J Bacteriol. 1955 Dec;70(6):625–634. doi: 10.1128/jb.70.6.625-634.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILZ H., KITTLER M. Reduction of active sulfate (PAPS) by dihydrolipoic acid as substrate. Biochem Biophys Res Commun. 1960 Aug;3:140–142. doi: 10.1016/0006-291x(60)90209-6. [DOI] [PubMed] [Google Scholar]
- Hilz H., Lipmann F. THE ENZYMATIC ACTIVATION OF SULFATE. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):880–890. doi: 10.1073/pnas.41.11.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ISHIMOTO M., YAGI T. Biochemical studies on sulfate-reducing bacteria. IX. Sulfite reductase. J Biochem. 1961 Feb;49:103–109. doi: 10.1093/oxfordjournals.jbchem.a127264. [DOI] [PubMed] [Google Scholar]
- JOHNSTONE K. I., TOWNSHEND M., WHITE D. Inter-species change in thiobacilli. J Gen Microbiol. 1961 Feb;24:201–206. doi: 10.1099/00221287-24-2-201. [DOI] [PubMed] [Google Scholar]
- KAJI A., GREGORY J. D. Mechanism of sulfurylation of choline. J Biol Chem. 1959 Nov;234:3007–3009. [PubMed] [Google Scholar]
- KAJI A., McELROY W. D. Mechanism of hydrogen sulfide formation from thiosulfate. J Bacteriol. 1959 May;77(5):630–637. doi: 10.1128/jb.77.5.630-637.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNIGHT B. C. J. G., PROOM H. A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. J Gen Microbiol. 1950 Sep;4(3):508–538. doi: 10.1099/00221287-4-3-508. [DOI] [PubMed] [Google Scholar]
- KRASNA A. I., RIKLIS E., RITTENBERG D. The purification and properties of the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2717–2720. [PubMed] [Google Scholar]
- LEES H. Energy metabolism in chemolithotropic bacteria. Annu Rev Microbiol. 1960;14:83–98. doi: 10.1146/annurev.mi.14.100160.000503. [DOI] [PubMed] [Google Scholar]
- LIPMANN F. Biological sulfate activation and transfer. Science. 1958 Sep 12;128(3324):575–580. doi: 10.1126/science.128.3324.575. [DOI] [PubMed] [Google Scholar]
- MAGER J. A TPNH-linked reductase and its relation to hydroxylamine reductase in Enterobacteriaceae. Biochim Biophys Acta. 1960 Jul 15;41:553–555. doi: 10.1016/0006-3002(60)90065-2. [DOI] [PubMed] [Google Scholar]
- MASSEY V. The identity of diaphorase and lipoyl dehydrogenase. Biochim Biophys Acta. 1960 Jan 15;37:314–322. doi: 10.1016/0006-3002(60)90239-0. [DOI] [PubMed] [Google Scholar]
- MECHALAS B. J., RITTENBERG S. C. Energy coupling in Desulfovibrio desulfuricans. J Bacteriol. 1960 Oct;80:501–507. doi: 10.1128/jb.80.4.501-507.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILHAUD G., AUBERT J. P., MILLET J. Role physiologique du cytochrome C de la bactérie chimioautotrophe Thiobacillus denitrificans. C R Hebd Seances Acad Sci. 1958 Mar 17;246(11):1766–1769. [PubMed] [Google Scholar]
- MILLET J. Le sulfite comme intermédiaire dans la réduction du sulfate par Desulfovibrio desulfuricans. C R Hebd Seances Acad Sci. 1955 Jan 10;240(2):253–255. [PubMed] [Google Scholar]
- NAKAMURA T., SATO R. Cysteine-S-sulphonate as an intermediate in microbiol synthesis of cysteine. Nature. 1960 Jan 16;185:163–164. doi: 10.1038/185163a0. [DOI] [PubMed] [Google Scholar]
- OLITZKI A. L. Hydrogen sulphide production by non-multiplying organisms and its inhibition by antibiotics. J Gen Microbiol. 1954 Oct;11(2):160–174. doi: 10.1099/00221287-11-2-160. [DOI] [PubMed] [Google Scholar]
- PARKER C. D., PRISK J. The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J Gen Microbiol. 1953 Jun;8(3):344–364. doi: 10.1099/00221287-8-3-344. [DOI] [PubMed] [Google Scholar]
- PECK H. D., Jr Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2734–2738. [PubMed] [Google Scholar]
- PECK H. D., Jr Evidence for the reversibility of the reaction catalyzed by adenosine 5'-phosphosulfate reductase. Biochim Biophys Acta. 1961 May 27;49:621–624. doi: 10.1016/0006-3002(61)90273-6. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. doi: 10.1099/00221287-14-3-545. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R. Iron and the synthesis of cytochrome c3. J Gen Microbiol. 1956 Aug;15(1):186–193. doi: 10.1099/00221287-15-1-186. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R. The reduction of sulphur compounds by Desulphovibrio desulphuricans. J Gen Microbiol. 1951 Oct;5(4):725–738. doi: 10.1099/00221287-5-4-725. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature. 1959 Feb 14;183(4659):481–482. doi: 10.1038/183481b0. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. The economic activities of sulphate-reducing bacteria. Prog Ind Microbiol. 1960;2:47–69. [PubMed] [Google Scholar]
- Peck H. D. ADENOSINE 5'-PHOSPHOSULFATE AS AN INTERMEDIATE IN THE OXIDATION OF THIOSULFATE BY THIOBACILLUS THIOPARUS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1053–1057. doi: 10.1073/pnas.46.8.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock M. R., Knox R. Bacterial reduction of tetrathionate: A report to the medical research council. Biochem J. 1943 Oct;37(4):476–481. doi: 10.1042/bj0370476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Separation of the two enzymatic phases in active sulfate synthesis. J Biol Chem. 1958 Sep;233(3):681–685. [PubMed] [Google Scholar]
- SADANA J. C., JAGANNATHAN V. Purification and properties of the hydrogenase of Desulfovibrio desulfuricans. Biochim Biophys Acta. 1956 Mar;19(3):440–452. doi: 10.1016/0006-3002(56)90467-x. [DOI] [PubMed] [Google Scholar]
- SADANA J. C., MOREY A. V. The purification of hydrogenase of Desulfovibrio desulfuricans. Biochim Biophys Acta. 1959 Apr;32:592–593. doi: 10.1016/0006-3002(59)90655-9. [DOI] [PubMed] [Google Scholar]
- SANTER M., BOYER J., SANTER U. Thiobacillus novellus. I. Growth on organic and inorganic media. J Bacteriol. 1959 Aug;78:197–202. doi: 10.1128/jb.78.2.197-202.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANTER M., MARGULIES M., KLINMAN N., KABACK R. Role of inorganic phosphate in thiosulfate metabolism by Thiobacillus thioparus. J Bacteriol. 1960 Mar;79:313–320. doi: 10.1128/jb.79.3.313-320.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ A. S., McMANUS D. K. Amino acids and inorganic sulfur as sulfur source for the growth of yeasts. Arch Biochem. 1950 Feb;25(2):401–409. [PubMed] [Google Scholar]
- SELWYN S. C., POSTGATE J. R. A search for the rubentschikii group of Desulphovibrio. Antonie Van Leeuwenhoek. 1959;25:465–472. doi: 10.1007/BF02542870. [DOI] [PubMed] [Google Scholar]
- SENEZ J. C., PICHINOTY F. Sur la réduction du nitrite aux dépens de l'hydrogène moléculaire par Desulfovibrio desulfuricans et d'autres espèces bactériennes. Bull Soc Chim Biol (Paris) 1958;40(12):2099–2117. [PubMed] [Google Scholar]
- SENEZ J. Etude comparative de la croissance de Sporovibrio desulfuricans sur pyruvate et sur lactate de soude. Ann Inst Pasteur (Paris) 1951 Apr;80(4):395–408. [PubMed] [Google Scholar]
- SHEPHERD C. J. Pathways of cysteine synthesis in Aspergillus nidulans. J Gen Microbiol. 1956 Aug;15(1):29–38. doi: 10.1099/00221287-15-1-29. [DOI] [PubMed] [Google Scholar]
- SKARZYNSKI B., OSTROWSKI W. Incorporation of radioactive sulphur by Thiobacillus thioparus. Nature. 1958 Oct 4;182(4640):933–934. doi: 10.1038/182933b0. [DOI] [PubMed] [Google Scholar]
- SORBO B. On the mechanism of sulfide oxidation in biological systems. Biochim Biophys Acta. 1960 Feb 26;38:349–351. doi: 10.1016/0006-3002(60)91255-5. [DOI] [PubMed] [Google Scholar]
- SZCZEPKOWSKI T. W., SKARZYNSKI B. Biochemia samo1zywnych bakterii siarkowych. I. Układ cytochromowy i hemoproteidy Thiobacillus thioparus i Thiobacillus thiooxydans. Acta Microbiol Pol. 1952;1(2):93–106. [PubMed] [Google Scholar]
- Sluiter E. The production of hydrogen sulphide by animal tissues. Biochem J. 1930;24(2):549–563. doi: 10.1042/bj0240549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer B., Harada T. The role of choline sulphate in the sulphur metabolism of fungi. Biochem J. 1960 Nov;77(2):305–315. doi: 10.1042/bj0770305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starkey R. L. Formation of Sulfide by Some Sulfur Bacteria. J Bacteriol. 1937 May;33(5):545–571. doi: 10.1128/jb.33.5.545-571.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I., Werkman C. H. GLUTATHIONE AND SULFUR OXIDATION BY THIOBACILLUS THIOOXIDANS. Proc Natl Acad Sci U S A. 1959 Feb;45(2):239–244. doi: 10.1073/pnas.45.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAGER J. M., RAUTANEN N. Sulphite oxidation by a plant mitochondrial system. I. Preliminary observations. Biochim Biophys Acta. 1955 Sep;18(1):111–121. doi: 10.1016/0006-3002(55)90014-7. [DOI] [PubMed] [Google Scholar]
- TRUDINGER P. A. Cytochromes and thiosulphate oxidation in an aerobic Thiobacillus. Biochim Biophys Acta. 1958 Oct;30(1):211–212. doi: 10.1016/0006-3002(58)90274-9. [DOI] [PubMed] [Google Scholar]
- TRUDINGER P. A. The initial products of thiosulphate oxidation by Thiobacillus X. Biochim Biophys Acta. 1959 Jan;31(1):270–272. doi: 10.1016/0006-3002(59)90474-3. [DOI] [PubMed] [Google Scholar]
- VAN NIEL C. B. Introductory remarks on the comparative biochemistry of micro-organisms. J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):11–38. doi: 10.1002/jcp.1030410404. [DOI] [PubMed] [Google Scholar]
- VISHNIAC W., SANTER M. The thiobacilli. Bacteriol Rev. 1957 Sep;21(3):195–213. doi: 10.1128/br.21.3.195-213.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]