Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Mar;95(3):1217–1224. doi: 10.1172/JCI117771

Decreased stress responsivity of central and peripheral catecholaminergic systems in aged 344/N Fischer rats.

G Cizza 1, K Pacak 1, R Kvetnansky 1, M Palkovits 1, D S Goldstein 1, L S Brady 1, K Fukuhara 1, E Bergamini 1, I J Kopin 1, M R Blackman 1, et al.
PMCID: PMC441460  PMID: 7883970

Abstract

We investigated the effects of stress on central and peripheral sympatho-adrenal and sympatho-neural functions in healthy, intact young (3-4 mo) and aged (24 mo) male Fischer 344/N rats. Extracellular fluid (ECF) levels of the catecholamines norepinephrine (NE), dihydroxyphenylglycol (DHPG), methoxyhydroxyphenylglycol (MHPG), and dihydroxyphenylacetic acid (DOPAC) were obtained by microdialysis in the paraventricular nucleus (PVN) of the hypothalamus at baseline and during immobilization (IMMO). The baseline levels of these substances were similar in both age groups, and their concentrations increased significantly in response to IMMO. The IMMO-induced increases of NE and MHPG, however, were significantly smaller in old than in young rats. Plasma levels of the catecholamines NE, DHPG, MHPG, DOPAC, dihydroxyphenylalanine (DOPA), epinephrine (EPI), dopamine (DA), and HVA were also determined in young and old rats during IMMO. Basal levels of these substances were significantly higher in old than in young rats. The magnitude of the IMMO-induced increases in the majority of these compounds however, was significantly smaller in old than in young rats. We conclude that, at the basal state, aging in the Fischer rat is associated with normal PVN ECF, but high plasma catecholamine levels; at stress state, however, old rats have substantially lesser activation of their central and peripheral catecholaminergic systems than young rats.

Full text

PDF
1217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avakian E. V., Horvath S. M. Influence of aging and tyrosine hydroxylase inhibition on tissue levels of norepinephrine during stress. J Gerontol. 1982 May;37(3):257–261. doi: 10.1093/geronj/37.3.257. [DOI] [PubMed] [Google Scholar]
  2. Banerji T. K., Parkening T. A., Collins T. J. Adrenomedullary catecholaminergic activity increases with age in male laboratory rodents. J Gerontol. 1984 May;39(3):264–268. doi: 10.1093/geronj/39.3.264. [DOI] [PubMed] [Google Scholar]
  3. Bickford P., Heron C., Young D. A., Gerhardt G. A., De La Garza R. Impaired acquisition of novel locomotor tasks in aged and norepinephrine-depleted F344 rats. Neurobiol Aging. 1992 Jul-Aug;13(4):475–481. doi: 10.1016/0197-4580(92)90075-9. [DOI] [PubMed] [Google Scholar]
  4. Ceccatelli S., Cortés R., Hökfelt T. Effect of reserpine and colchicine on neuropeptide mRNA levels in the rat hypothalamic paraventricular nucleus. Brain Res Mol Brain Res. 1991 Jan;9(1-2):57–69. doi: 10.1016/0169-328x(91)90130-p. [DOI] [PubMed] [Google Scholar]
  5. Chan-Palay V., Asan E. Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol. 1989 Sep 15;287(3):357–372. doi: 10.1002/cne.902870307. [DOI] [PubMed] [Google Scholar]
  6. Chrousos G. P., Gold P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992 Mar 4;267(9):1244–1252. [PubMed] [Google Scholar]
  7. Cizza G., Brady L. S., Calogero A. E., Bagdy G., Lynn A. B., Kling M. A., Blackman M. R., Chrousos G. P., Gold P. W. Central hypothyroidism is associated with advanced age in male Fischer 344/N rats: in vivo and in vitro studies. Endocrinology. 1992 Dec;131(6):2672–2680. doi: 10.1210/endo.131.6.1446609. [DOI] [PubMed] [Google Scholar]
  8. Cizza G., Calogero A. E., Brady L. S., Bagdy G., Bergamini E., Blackman M. R., Chrousos G. P., Gold P. W. Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age. Endocrinology. 1994 Apr;134(4):1611–1620. doi: 10.1210/endo.134.4.8137722. [DOI] [PubMed] [Google Scholar]
  9. Cizza G., Kvetnansky R., Tartaglia M. E., Blackman M. R., Chrousos G. P., Gold P. W. Immobilization stress rapidly decreases hypothalamic corticotropin-releasing hormone secretion in vitro in the male 344/N Fischer rat. Life Sci. 1993;53(3):233–240. doi: 10.1016/0024-3205(93)90674-r. [DOI] [PubMed] [Google Scholar]
  10. Cizza G., Sternberg E. M. The role of the hypothalamic-pituitary-adrenal axis in susceptibility to autoimmune/inflammatory disease. Immunomethods. 1994 Aug;5(1):73–78. doi: 10.1006/immu.1994.1039. [DOI] [PubMed] [Google Scholar]
  11. Eisenhofer G., Goldstein D. S., Ropchak T. G., Nguyen H. Q., Keiser H. R., Kopin I. J. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol. J Auton Nerv Syst. 1988 Sep;24(1-2):1–14. doi: 10.1016/0165-1838(88)90130-0. [DOI] [PubMed] [Google Scholar]
  12. Estes K. S., Simpkins J. W. Age-related alterations in catecholamine concentrations in discrete preoptic area and hypothalamic regions in the male rat. Brain Res. 1980 Aug 4;194(2):556–560. doi: 10.1016/0006-8993(80)91241-x. [DOI] [PubMed] [Google Scholar]
  13. Garty M., Stull R., Kopin I. J., Goldstein D. S. Skin color, aging, and plasma L-dopa levels. J Auton Nerv Syst. 1989 Apr;26(3):261–263. doi: 10.1016/0165-1838(89)90175-6. [DOI] [PubMed] [Google Scholar]
  14. Goldman G., Coleman P. D. Neuron numbers in locus coeruleus do not change with age in Fisher 344 rat. Neurobiol Aging. 1981 Spring;2(1):33–36. doi: 10.1016/0197-4580(81)90056-7. [DOI] [PubMed] [Google Scholar]
  15. Goldstein D. S., Eisenhofer G., Stull R., Folio C. J., Keiser H. R., Kopin I. J. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Invest. 1988 Jan;81(1):213–220. doi: 10.1172/JCI113298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldstein D. S., Udelsman R., Eisenhofer G., Stull R., Keiser H. R., Kopin I. J. Neuronal source of plasma dihydroxyphenylalanine. J Clin Endocrinol Metab. 1987 Apr;64(4):856–861. doi: 10.1210/jcem-64-4-856. [DOI] [PubMed] [Google Scholar]
  17. Grima B., Lamouroux A., Blanot F., Biguet N. F., Mallet J. Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci U S A. 1985 Jan;82(2):617–621. doi: 10.1073/pnas.82.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ida Y., Tanaka M., Tsuda A., Kohno Y., Hoaki Y., Nakagawa R., Iimori K., Nagasaki N. Recovery of stress-induced increases in noradrenaline turnover is delayed in specific brain regions of old rats. Life Sci. 1984 Jun 11;34(24):2357–2363. doi: 10.1016/0024-3205(84)90422-3. [DOI] [PubMed] [Google Scholar]
  19. Irwin M., Hauger R., Brown M. Central corticotropin-releasing hormone activates the sympathetic nervous system and reduces immune function: increased responsivity of the aged rat. Endocrinology. 1992 Sep;131(3):1047–1053. doi: 10.1210/endo.131.3.1505449. [DOI] [PubMed] [Google Scholar]
  20. Kopin I. J. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev. 1985 Dec;37(4):333–364. [PubMed] [Google Scholar]
  21. Kvetnansky R., Armando I., Weise V. K., Holmes C., Fukuhara K., Deka-Starosta A., Kopin I. J., Goldstein D. S. Plasma dopa responses during stress: dependence on sympathoneural activity and tyrosine hydroxylation. J Pharmacol Exp Ther. 1992 Jun;261(3):899–909. [PubMed] [Google Scholar]
  22. Kvetnansky R., Sun C. L., Lake C. R., Thoa N., Torda T., Kopin I. J. Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase. Endocrinology. 1978 Nov;103(5):1868–1874. doi: 10.1210/endo-103-5-1868. [DOI] [PubMed] [Google Scholar]
  23. Kvetnansky R., Weise V. K., Thoa N. B., Kopin I. J. Effects of chronic guanethidine treatment and adrenal medullectomy on plasma levels of catecholamines and corticosterone in forcibly immobilized rats. J Pharmacol Exp Ther. 1979 May;209(2):287–291. [PubMed] [Google Scholar]
  24. Kvetnanský R., Jahnová E., Torda T., Strbák V., Baláz V., Macho L. Changes of adrenal catecholamines and their synthesizing enzymes during ontogenesis and aging in rats. Mech Ageing Dev. 1978 Mar;7(3):209–216. doi: 10.1016/0047-6374(78)90067-2. [DOI] [PubMed] [Google Scholar]
  25. McCarty R. Effects of 2-deoxyglucose on plasma catecholamines in adult and aged rats. Neurobiol Aging. 1984 Winter;5(4):285–289. doi: 10.1016/0197-4580(84)90004-6. [DOI] [PubMed] [Google Scholar]
  26. McCarty R. Sympathetic-adrenal medullary and cardiovascular responses to acute cold stress in adult and aged rats. J Auton Nerv Syst. 1985 Jan;12(1):15–22. doi: 10.1016/0165-1838(85)90037-2. [DOI] [PubMed] [Google Scholar]
  27. McIntosh H. H., Westfall T. C. Influence of aging on catecholamine levels, accumulation, and release in F-344 rats. Neurobiol Aging. 1987 May-Jun;8(3):233–239. doi: 10.1016/0197-4580(87)90007-8. [DOI] [PubMed] [Google Scholar]
  28. McMahon A., Kvetnanský R., Fukuhara K., Weise V. K., Kopin I. J., Sabban E. L. Regulation of tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress. J Neurochem. 1992 Jun;58(6):2124–2130. doi: 10.1111/j.1471-4159.1992.tb10954.x. [DOI] [PubMed] [Google Scholar]
  29. Meites J. Aging: hypothalamic catecholamines, neuroendocrine-immune interactions, and dietary restriction. Proc Soc Exp Biol Med. 1990 Dec;195(3):304–311. doi: 10.3181/00379727-195-43150b. [DOI] [PubMed] [Google Scholar]
  30. Meites J. Role of hypothalamic catecholamines in aging processes. Acta Endocrinol (Copenh) 1991;125 (Suppl 1):98–103. [PubMed] [Google Scholar]
  31. Michalíková S., Balázová H., Jezová D., Kvetnanský R. Zmeny hladín cirkulujúcich katecholamínov u starých potkanov za bazálnych podmienok a pocas stresu. Bratisl Lek Listy. 1990 Sep;91(9):689–693. [PubMed] [Google Scholar]
  32. Olpe H. R., Steinmann M. W. Age-related decline in the activity of noradrenergic neurons of the rat locus coeruleus. Brain Res. 1982 Nov 11;251(1):174–176. doi: 10.1016/0006-8993(82)91287-2. [DOI] [PubMed] [Google Scholar]
  33. Pacak K., Armando I., Fukuhara K., Kvetnansky R., Palkovits M., Kopin I. J., Goldstein D. S. Noradrenergic activation in the paraventricular nucleus during acute and chronic immobilization stress in rats: an in vivo microdialysis study. Brain Res. 1992 Aug 28;589(1):91–96. doi: 10.1016/0006-8993(92)91165-b. [DOI] [PubMed] [Google Scholar]
  34. Scarpace P. J. Decreased receptor activation with age. Can it be explained by desensitization? J Am Geriatr Soc. 1988 Nov;36(11):1067–1071. doi: 10.1111/j.1532-5415.1988.tb04379.x. [DOI] [PubMed] [Google Scholar]
  35. Smith M. A., Brady L. S., Glowa J., Gold P. W., Herkenham M. Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res. 1991 Mar 22;544(1):26–32. doi: 10.1016/0006-8993(91)90881-u. [DOI] [PubMed] [Google Scholar]
  36. Sturrock R. R., Rao K. A. A quantitative histological study of neuronal loss from the locus coeruleus of ageing mice. Neuropathol Appl Neurobiol. 1985 Jan-Feb;11(1):55–60. doi: 10.1111/j.1365-2990.1985.tb00004.x. [DOI] [PubMed] [Google Scholar]
  37. Tomonaga M. Neuropathology of the locus ceruleus: a semi-quantitative study. J Neurol. 1983;230(4):231–240. doi: 10.1007/BF00313699. [DOI] [PubMed] [Google Scholar]
  38. Whybrow P. C., Prange A. J., Jr A hypothesis of thyroid-catecholamine-receptor interaction. Its relevance to affective illness. Arch Gen Psychiatry. 1981 Jan;38(1):106–113. doi: 10.1001/archpsyc.1981.01780260108012. [DOI] [PubMed] [Google Scholar]
  39. Zhou L. W., Weiss B., Freilich J. S., Greenberg L. H. Impaired recovery of alpha 1- and alpha 2-adrenergic receptors in brain tissue of aged rats. J Gerontol. 1984 Sep;39(5):538–546. doi: 10.1093/geronj/39.5.538. [DOI] [PubMed] [Google Scholar]
  40. Ziegler M. G., Lake C. R., Kopin I. J. Plasma noradrenaline increases with age. Nature. 1976 May 27;261(5558):333–335. doi: 10.1038/261333a0. [DOI] [PubMed] [Google Scholar]
  41. Zigmond R. E., Schwarzschild M. A., Rittenhouse A. R. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu Rev Neurosci. 1989;12:415–461. doi: 10.1146/annurev.ne.12.030189.002215. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES