Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Mar;95(3):1244–1252. doi: 10.1172/JCI117774

Activation of mesangial cells by the phosphatase inhibitor vanadate. Potential implications for diabetic nephropathy.

U O Wenzel 1, B Fouqueray 1, P Biswas 1, G Grandaliano 1, G G Choudhury 1, H E Abboud 1
PMCID: PMC441463  PMID: 7883973

Abstract

The metalion vanadate has insulin-like effects and has been advocated for use in humans as a therapeutic modality for diabetes mellitus. However, since vanadate is a tyrosine phosphatase inhibitor, it may result in undesirable activation of target cells. We studied the effect of vanadate on human mesangial cells, an important target in diabetic nephropathy. Vanadate stimulated DNA synthesis and PDGF B chain gene expression. Vanadate also inhibited total tyrosine phosphatase activity and stimulated tyrosine phosphorylation of a set of cellular proteins. Two chemically and mechanistically dissimilar tyrosine kinase inhibitors, genistein and herbimycin A, blocked DNA synthesis induced by vanadate. Vanadate also stimulated phospholipase C and protein kinase C. Downregulation of protein kinase C abolished vanadate-induced DNA synthesis. Thus, vanadate-induced mitogenesis is dependent on tyrosine kinases and protein kinase C activation. The most likely mechanism for the effect of vanadate on these diverse processes involves the inhibition of cellular phosphotyrosine phosphatases. These studies demonstrating that vanadate activates mesangial cells may have major implications for the therapeutic potential of vanadate administration in diabetes. Although vanadate exerts beneficial insulin-like effects and potentiates the effect of insulin in sensitive tissue, it may result in undesirable activation of other target cells, such as mesangial cells.

Full text

PDF
1244

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud H. E., Grandaliano G., Pinzani M., Knauss T., Pierce G. F., Jaffer F. Actions of platelet-derived growth factor isoforms in mesangial cells. J Cell Physiol. 1994 Jan;158(1):140–150. doi: 10.1002/jcp.1041580118. [DOI] [PubMed] [Google Scholar]
  2. Abboud H. E. Growth factors and the mesangium. J Am Soc Nephrol. 1992 Apr;2(10 Suppl):S185–S189. doi: 10.1681/ASN.V210s185. [DOI] [PubMed] [Google Scholar]
  3. Akiyama T., Ogawara H. Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:362–370. doi: 10.1016/0076-6879(91)01032-w. [DOI] [PubMed] [Google Scholar]
  4. Barnes J. L., Abboud H. E. Temporal expression of autocrine growth factors corresponds to morphological features of mesangial proliferation in Habu snake venom-induced glomerulonephritis. Am J Pathol. 1993 Nov;143(5):1366–1376. [PMC free article] [PubMed] [Google Scholar]
  5. Bell R. M., Hannun Y., Loomis C. Mixed micelle assay of protein kinase C. Methods Enzymol. 1986;124:353–359. doi: 10.1016/0076-6879(86)24027-6. [DOI] [PubMed] [Google Scholar]
  6. Bosch F., Hatzoglou M., Park E. A., Hanson R. W. Vanadate inhibits expression of the gene for phosphoenolpyruvate carboxykinase (GTP) in rat hepatoma cells. J Biol Chem. 1990 Aug 15;265(23):13677–13682. [PubMed] [Google Scholar]
  7. Brown D. J., Gordon J. A. The stimulation of pp60v-src kinase activity by vanadate in intact cells accompanies a new phosphorylation state of the enzyme. J Biol Chem. 1984 Aug 10;259(15):9580–9586. [PubMed] [Google Scholar]
  8. Canalis E. Effect of sodium vanadate on deoxyribonucleic acid and protein syntheses in cultured rat calvariae. Endocrinology. 1985 Mar;116(3):855–862. doi: 10.1210/endo-116-3-855. [DOI] [PubMed] [Google Scholar]
  9. Choudhury G. G., Biswas P., Grandaliano G., Abboud H. E. Involvement of PKC-alpha in PDGF-mediated mitogenic signaling in human mesangial cells. Am J Physiol. 1993 Nov;265(5 Pt 2):F634–F642. doi: 10.1152/ajprenal.1993.265.5.F634. [DOI] [PubMed] [Google Scholar]
  10. Choudhury G. G., Biswas P., Grandaliano G., Fouqueray B., Harvey S. A., Abboud H. E. PDGF-mediated activation of phosphatidylinositol 3 kinase in human mesangial cells. Kidney Int. 1994 Jul;46(1):37–47. doi: 10.1038/ki.1994.242. [DOI] [PubMed] [Google Scholar]
  11. Choudhury G. G., Sylvia V. L., Wang L. M., Pierce J., Sakaguchi A. Y. The kinase insert domain of colony stimulating factor-1 receptor is dispensable for CSF-1 induced phosphatidylcholine hydrolysis. FEBS Lett. 1991 May 6;282(2):351–354. doi: 10.1016/0014-5793(91)80511-z. [DOI] [PubMed] [Google Scholar]
  12. Cicirelli M. F., Tonks N. K., Diltz C. D., Weiel J. E., Fischer E. H., Krebs E. G. Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5514–5518. doi: 10.1073/pnas.87.14.5514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cros G., Mongold J. J., Serrano J. J., Ramanadham S., McNeill J. H. Effects of vanadyl derivatives on animal models of diabetes. Mol Cell Biochem. 1992 Feb 12;109(2):163–166. doi: 10.1007/BF00229771. [DOI] [PubMed] [Google Scholar]
  14. Doi T., Vlassara H., Kirstein M., Yamada Y., Striker G. E., Striker L. J. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2873–2877. doi: 10.1073/pnas.89.7.2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dubyak G. R., Kleinzeller A. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. J Biol Chem. 1980 Jun 10;255(11):5306–5312. [PubMed] [Google Scholar]
  16. Escobedo J. A., Williams L. T. A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature. 1988 Sep 1;335(6185):85–87. doi: 10.1038/335085a0. [DOI] [PubMed] [Google Scholar]
  17. Gesualdo L., Pinzani M., Floriano J. J., Hassan M. O., Nagy N. U., Schena F. P., Emancipator S. N., Abboud H. E. Platelet-derived growth factor expression in mesangial proliferative glomerulonephritis. Lab Invest. 1991 Aug;65(2):160–167. [PubMed] [Google Scholar]
  18. Gherzi R., Caratti C., Andraghetti G., Bertolini S., Montemurro A., Sesti G., Cordera R. Direct modulation of insulin receptor protein tyrosine kinase by vanadate and anti-insulin receptor monoclonal antibodies. Biochem Biophys Res Commun. 1988 May 16;152(3):1474–1480. doi: 10.1016/s0006-291x(88)80452-2. [DOI] [PubMed] [Google Scholar]
  19. Grandaliano G., Biswas P., Choudhury G. G., Abboud H. E. Simvastatin inhibits PDGF-induced DNA synthesis in human glomerular mesangial cells. Kidney Int. 1993 Sep;44(3):503–508. doi: 10.1038/ki.1993.274. [DOI] [PubMed] [Google Scholar]
  20. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  21. Heldin P., Asplund T., Ytterberg D., Thelin S., Laurent T. C. Characterization of the molecular mechanism involved in the activation of hyaluronan synthetase by platelet-derived growth factor in human mesothelial cells. Biochem J. 1992 Apr 1;283(Pt 1):165–170. doi: 10.1042/bj2830165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heyliger C. E., Tahiliani A. G., McNeill J. H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science. 1985 Mar 22;227(4693):1474–1477. doi: 10.1126/science.3156405. [DOI] [PubMed] [Google Scholar]
  23. Huang C. L., Ives H. E. Growth inhibition by protein kinase C late in mitogenesis. 1987 Oct 29-Nov 4Nature. 329(6142):849–850. doi: 10.1038/329849a0. [DOI] [PubMed] [Google Scholar]
  24. Iida H., Seifert R., Alpers C. E., Gronwald R. G., Phillips P. E., Pritzl P., Gordon K., Gown A. M., Ross R., Bowen-Pope D. F. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6560–6564. doi: 10.1073/pnas.88.15.6560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jaffer F., Saunders C., Shultz P., Throckmorton D., Weinshell E., Abboud H. E. Regulation of mesangial cell growth by polypeptide mitogens. Inhibitory role of transforming growth factor beta. Am J Pathol. 1989 Aug;135(2):261–269. [PMC free article] [PubMed] [Google Scholar]
  26. Klarlund J. K. Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins. Cell. 1985 Jul;41(3):707–717. doi: 10.1016/s0092-8674(85)80051-9. [DOI] [PubMed] [Google Scholar]
  27. Knauss T. C., Jaffer F. E., Abboud H. E. Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C. J Biol Chem. 1990 Aug 25;265(24):14457–14463. [PubMed] [Google Scholar]
  28. Maher P. A. Stimulation of endothelial cell proliferation by vanadate is specific for microvascular endothelial cells. J Cell Physiol. 1992 Jun;151(3):549–554. doi: 10.1002/jcp.1041510314. [DOI] [PubMed] [Google Scholar]
  29. Mauer S. M. Structural-functional correlations of diabetic nephropathy. Kidney Int. 1994 Feb;45(2):612–622. doi: 10.1038/ki.1994.80. [DOI] [PubMed] [Google Scholar]
  30. Meyerovitch J., Rothenberg P., Shechter Y., Bonner-Weir S., Kahn C. R. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J Clin Invest. 1991 Apr;87(4):1286–1294. doi: 10.1172/JCI115131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Montesano R., Pepper M. S., Belin D., Vassalli J. D., Orci L. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol. 1988 Mar;134(3):460–466. doi: 10.1002/jcp.1041340318. [DOI] [PubMed] [Google Scholar]
  32. Nakamura T., Fukui M., Ebihara I., Osada S., Nagaoka I., Tomino Y., Koide H. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes. 1993 Mar;42(3):450–456. doi: 10.2337/diab.42.3.450. [DOI] [PubMed] [Google Scholar]
  33. Nechay B. R. Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol. 1984;24:501–524. doi: 10.1146/annurev.pa.24.040184.002441. [DOI] [PubMed] [Google Scholar]
  34. Rawson C., Cosola-Smith C., Barnes D. Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation is prevented by cycloheximide, 12-O-tetradecanoylphorbol-13-acetate, or vanadate. Exp Cell Res. 1990 Jan;186(1):177–181. doi: 10.1016/0014-4827(90)90224-x. [DOI] [PubMed] [Google Scholar]
  35. Saxena A. K., Srivastava P., Kale R. K., Baquer N. Z. Effect of vanadate administration on polyol pathway in diabetic rat kidney. Biochem Int. 1992 Feb;26(1):59–68. [PubMed] [Google Scholar]
  36. Sharma K., Ziyadeh F. N. The transforming growth factor-beta system and the kidney. Semin Nephrol. 1993 Jan;13(1):116–128. [PubMed] [Google Scholar]
  37. Shechter Y. Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes. 1990 Jan;39(1):1–5. doi: 10.2337/diacare.39.1.1. [DOI] [PubMed] [Google Scholar]
  38. Shultz P. J., DiCorleto P. E., Silver B. J., Abboud H. E. Mesangial cells express PDGF mRNAs and proliferate in response to PDGF. Am J Physiol. 1988 Oct;255(4 Pt 2):F674–F684. doi: 10.1152/ajprenal.1988.255.4.F674. [DOI] [PubMed] [Google Scholar]
  39. Silver B. J., Jaffer F. E., Abboud H. E. Platelet-derived growth factor synthesis in mesangial cells: induction by multiple peptide mitogens. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1056–1060. doi: 10.1073/pnas.86.3.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith J. B. Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6 cells. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6162–6166. doi: 10.1073/pnas.80.20.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Streuli M., Krueger N. X., Thai T., Tang M., Saito H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 1990 Aug;9(8):2399–2407. doi: 10.1002/j.1460-2075.1990.tb07415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Striker G. E., Peten E. P., Carome M. A., Pesce C. M., Schmidt K., Yang C. W., Elliot S. J., Striker L. J. The kidney disease of diabetes mellitus (KDDM): a cell and molecular biology approach. Diabetes Metab Rev. 1993 Apr;9(1):37–56. doi: 10.1002/dmr.5610090105. [DOI] [PubMed] [Google Scholar]
  43. Tamura S., Brown T. A., Whipple J. H., Fujita-Yamaguchi Y., Dubler R. E., Cheng K., Larner J. A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem. 1984 May 25;259(10):6650–6658. [PubMed] [Google Scholar]
  44. Uehara Y., Fukazawa H. Use and selectivity of herbimycin A as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:370–379. doi: 10.1016/0076-6879(91)01033-x. [DOI] [PubMed] [Google Scholar]
  45. Wice B., Milbrandt J., Glaser L. Control of muscle differentiation in BC3H1 cells by fibroblast growth factor and vanadate. J Biol Chem. 1987 Feb 5;262(4):1810–1817. [PubMed] [Google Scholar]
  46. Wu Y. Y., Bradshaw R. A. Effect of nerve growth factor and fibroblast growth factor on PC12 cells: inhibition by orthovanadate. J Cell Biol. 1993 Apr;121(2):409–422. doi: 10.1083/jcb.121.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES