Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 21;91(13):6171–6175. doi: 10.1073/pnas.91.13.6171

A stereochemical approach to pyranose ring flexibility: its implications for the conformation of dermatan sulfate.

G Venkataraman 1, V Sasisekharan 1, C L Cooney 1, R Langer 1, R Sasisekharan 1
PMCID: PMC44160  PMID: 8016133

Abstract

Glycosaminoglycans, such as heparin, heparan sulfate, and dermatan sulfate, are characterized by a disaccharide repeating unit of a uronate and a hexosamine and are increasingly understood to be important physiologically as soluble components of the extracellular matrix. The secondary structure of this class of acidic polysaccharides is believed to play a key role in determining the wide range of biological specificities. Central to the structural diversity of the glycosaminoglycans is the experimentally documented conformational flexibility of the iduronate residue. Here, we outline an approach to explore the iduronate conformational flexibility by imposing stereochemical criteria of nonbonded contact distances. By performing a complete search of all possible torsions that define the iduronate ring geometry, we eliminate any prior bias with regard to minimum energy conformers. The approach led to alternative feasible conformers for the iduronate ring that are stereochemically satisfactory and are consistent with the available physico-chemical data.

Full text

PDF
6171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casu B., Choay J., Ferro D. R., Gatti G., Jacquinet J. C., Petitou M., Provasoli A., Ragazzi M., Sinay P., Torri G. Controversial glycosaminoglycan conformations. Nature. 1986 Jul 17;322(6076):215–216. doi: 10.1038/322215b0. [DOI] [PubMed] [Google Scholar]
  2. Conrad H. E. Structure of heparan sulfate and dermatan sulfate. Ann N Y Acad Sci. 1989;556:18–28. doi: 10.1111/j.1749-6632.1989.tb22486.x. [DOI] [PubMed] [Google Scholar]
  3. Inoue Y., Inouye Y., Nagasawa K. Conformational equilibria of the L-iduronate residue in non-sulphated di-, tetra- and hexa-saccharides and their alditols derived from dermatan sulphate. Biochem J. 1990 Jan 15;265(2):533–538. doi: 10.1042/bj2650533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  5. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  6. Klagsbrun M., Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991 Oct 18;67(2):229–231. doi: 10.1016/0092-8674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  7. Mitra A. K., Arnott S., Atkins E. D., Isaac D. H. Dermatan sulfate: molecular conformations and interactions in the condensed state. J Mol Biol. 1983 Oct 5;169(4):873–901. doi: 10.1016/s0022-2836(83)80141-7. [DOI] [PubMed] [Google Scholar]
  8. Mulloy B., Forster M. J., Jones C., Davies D. B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem J. 1993 Aug 1;293(Pt 3):849–858. doi: 10.1042/bj2930849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  10. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  11. Scott J. E. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992 Jun;6(9):2639–2645. [PubMed] [Google Scholar]
  12. Shields J. W. Human lymphocytopathic retroviruses (HLRV)? Nature. 1985 Oct 10;317(6037):480–480. doi: 10.1038/317480b0. [DOI] [PubMed] [Google Scholar]
  13. Winter W. T., Taylor M. G., Stevens E. S., Morris E. R., Rees D. A. Solid-state 13C NMR and X-ray diffraction of dermatan sulfate. Biochem Biophys Res Commun. 1986 May 29;137(1):87–93. doi: 10.1016/0006-291x(86)91179-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES