Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Apr 30;3(2):e00159-15. doi: 10.1128/genomeA.00159-15

Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

Shannon L Johnson a,, Kimberly A Bishop-Lilly c,d, Jason T Ladner e, Hajnalka E Daligault a, Karen W Davenport a, James Jaissle b, Kenneth G Frey c,d, Galina I Koroleva e, David C Bruce c, Susan R Coyne b, Stacey M Broomall f, Po-E Li a, Hazuki Teshima a, Henry S Gibbons f, Gustavo F Palacios e, C Nicole Rosenzweig f, Cassie L Redden c,d, Yan Xu a, Timothy D Minogue b, Patrick S Chain a
PMCID: PMC4417688  PMID: 25931592

Abstract

The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

GENOME ANNOUNCEMENT

Burkholderia mallei and Burkholderia pseudomallei are among the bacterial species considered to be potential bioweapons, along with Bacillus anthracis, Brucella melitensis, Brucella abortus, and Yersinia pestis (1, 2). B. pseudomallei causes melioidosis, often a respiratory infection mimicking tuberculosis, while B. mallei generally infects horses, causing glanders. The listing of these bacteria as potential biothreats is due to their easy availability (B. pseudomallei is often recovered from soils in regions where it is endemic), their ability to cause severe and often fatal disease, multiple routes of infection, native antibiotic resistance, lack of available vaccines, wide host range, and ability to persist in the environment for weeks to years (39). B. mallei was reportedly used as a biological weapon on several occasions (1014); however, while B. pseudomallei was investigated for its use as a bioweapon, there are no reports that it has been employed in this fashion (5, 11). Other Burkholderia species are opportunistic pathogens (e.g., the Burkholderia cepacia complex [Bcc] that adversely affects cystic fibrosis patents [including 7 species sequenced here]), plant pathogens (such as Burkholderia gladioli) and/or common soil microorganisms. Here we present full genome sequences of 59 strains useful for detection assay development, including both species that should be detected (inclusivity) and those that should not be (exclusivity).

Draft genome assemblies included two or more data sets (specific data types and coverages are listed in the NCBI records): Illumina (short- and/or long-insert paired data), Roche 454 (long-insert paired data), and PacBio long reads. Short- and long-insert paired data were assembled together in both Newbler and Velvet, and computationally shredded into 1.5-kbp overlapping shreds. If the PacBio coverage was 100× or greater, the data were assembled using PacBio’s Hierarchical Genome Assembly Process (HGAP) (15). All data were additionally assembled together in Allpaths whenever possible (16). Consensus sequences from both HGAP and Allpaths were computationally shredded into 10-kbp overlapping pieces. All shreds were integrated using Phrap. Possible misassemblies were corrected and repeat regions verified using in-house scripts and manual editing in Consed (1719). All of the genomes were assembled into finished-quality complete genomes (20). Each genome assembly was annotated using an Ergatis-based (21) workflow with minor manual curation.

Genome assemblies range from 5.4 to 9.7 Mb (Table 1, mean 6.96 ± 0.014 Mb), with two or three chromosomes and up to three plasmids. As expected for the genus, the G+C content was high, averaging 67.7%.

TABLE 1 .

Listing of Burkholderia isolate genomes released to NCBI

Species and isolate Accession no. (no. of contigs)a Panelb Genome (bp) No. of plasmids No. of CDSsc G+C content (%)
B. ambifaria
    AMMD CP009797CP009800 E 7,528,578 1 6,602 67
B. cepacia
    LMG 16656 JTDP00000000 (5) E 7,923,342 1 7,278 68
B. dolosa
    AU0158 CP009793CP009795 E 6,409,095 2 5,657 67
B. fungorum
    ATCC BAA-463 CP010024CP010027 E 9,058,983 1 8,206 62
B. gladioli
    ATCC 10248 CP009319CP009322 E 8,899,459 3 7,561 68
B. glumae
    ATCC 33617 CP009432CP009435 E 6,820,727 2 5,864 68
B. mallei
    6 CP008710CP008711 I 5,647,769 0 4,872 68
    11 CP009587CP009588 I 5,913,134 0 5,083 68
    NCTC 10247 CP007801CP007802 I 5,827,656 0 5,001 68
    2000031063 CP008731CP008732 I 5,874,930 0 5,067 68
    2002721276 CP010065CP010066 I 5,780,439 0 4,954 69
    2002734299 CP009337CP009338 I 5,740,115 0 4,966 68
    2002734306 CP009707CP009708 I 5,409,162 0 4,703 68
    China5 JPNX00000000 (2) I 5,869,855 0 5,043 68
    FMH 23344 CP008704CP008705 I 5,625,292 0 4,883 68
    India86-567-2 CP009642CP009643 I 5,686,446 0 4,911 68
    KC_1092 CP009942CP009943 I 5,661,851 0 4,868 68
B. multivorans
    BAA-247 CP009830CP009832 E 6,322,746 0 5,607 67
B. oklahomensis
    C6786 CP009555CP009556 E 7,135,022 0 6,083 67
    EO147 CP008726CP008727 E 7,313,673 0 6,312 67
B. pseudomallei
    9 CP008753CP008755 I 7,228,737 1 5,978 68
    576 CP008777CP008778 I 7,266,604 0 5,944 68
    1026b CP004379CP004380 I 7,450,511 0 6,113 68
    1106a CP008758CP008759 I 7,086,433 0 5,758 68
    7894 CP009535CP009536 I 7,381,912 0 6,036 68
    PB08298010 CP009550CP009551 I 7,375,551 0 6,023 68
    K96243 CP009537CP009538 I 7,247,614 0 5,933 68
    MSHR 146 CP004042CP004043 I 7,313,103 0 5,963 68
    MSHR 1655 CP008779CP008780 I 7,027,950 0 5,798 68
    MSHR 2543 CP009477CP009478 I 7,446,569 0 6,183 68
    MSHR 305 CP006469CP006470 I 7,428,072 0 6,105 68
    MSHR 346 CP008763CP008764 I 7,354,416 0 6,015 68
    MSHR 406e CP009297CP009298 I 7,271,506 0 5,927 68
    MSHR 491 CP009484CP009485 I 7,356,376 0 6,080 68
    MSHR 511 CP004023CP004024 I 7,316,085 0 5,964 68
    MSHR 520 CP004368CP004369 I 7,447,511 0 6,113 68
    MSHR 668 CP009545CP009546 I 7,042,714 0 5,793 68
    MSHR 840 CP009473CP009474 I 7,129,813 0 5,860 68
    NAU 20B-16 CP004003CP004004 I 7,313,851 0 5,969 68
    NAU 35A-3 CP004377CP004378 I 7,204,083 0 5,844 68
    NCTC 13178 CP004001CP004002 I 7,408,007 0 6,133 68
    NCTC 13179 CP003976CP003977 I 7,337,157 0 6,085 68
    Pasteur 52237 CP009898CP009899 I 7,325,318 0 6,015 68
    PHLS 112 CP009585CP009586 I 7,202,363 0 5,868 68
B. thailandensis
    2002721643 CP009601CP009602 E 6,722,801 0 5,649 68
    2002721687 CP009547CP009549 E 7,285,824 1 6,327 67
    2002721723 CP004097CP004098 E 6,577,133 0 5,533 68
    2003015869 CP008914CP008915 E 6,728,980 0 5,679 68
    34 CP010016CP010018 E 7,120,198 1 6,129 67
    E254 CP004381CP004382 E 6,676,730 0 5,591 68
    E264 CP008785CP008786 E 6,722,099 0 5,655 68
    E444 CP004117CP004118 E 6,651,696 0 5,571 68
    H0587 CP004089CP004090 E 6,768,375 0 5,629 68
    Malaysia 20 CP004383CP004384 E 6,684,359 0 5,620 68
    MSMB 121 CP004095CP004096 E 6,731,379 0 5,758 68
    Phuket 4W-1 AQQJ00000000 (3) E 6,674,944 0 5,635 68
B. ubonensis
    MSMB 22 CP009486CP009488 E 7,189,071 0 6,257 67
B. vietnamiensis
    LMG 10929 CP009629CP009632 E 6,930,496 1 6,120 67
B. xenovorans
    LB400 CP008760CP008762 E 9,702,951 0 8,684 63
a

Contig count is listed only for genomes at Improved High Quality Draft (IHQD) quality; all others are finished (20).

b

E, exclusivity strain; I, inclusivity strain.

c

CDS, coding sequence.

Nucleotide sequence accession numbers.

Accession numbers for all 59 genomes are listed in Table 1.

ACKNOWLEDGMENTS

Funding for this effort was provided by the Defense Threat Reduction Agency’s Joint Science and Technology Office (DTRA J9-CB/JSTO) and Department of Homeland Security Science and Technology Directorate, award HSHQDC-08-X-00790. This article is approved by LANL for unlimited release (LA-UR-14-29605).

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government.

Bacterial strains were obtained from the Department of Defense’s Unified Culture Collection (http://www.usamriid.army.mil/ucc/) or BEI Resources (http://beiresources.org/).

Footnotes

Citation Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW, Jaissle J, Frey KG, Koroleva GI, Bruce DC, Coyne SR, Broomall SM, Li P-E, Teshima H, Gibbons HS, Palacios GF, Rosenzweig CN, Redden CL, Xu Y, Minogue TD, Chain PS. 2015. Complete genome sequences for 59 Burkholderia isolates, both pathogenic and near neighbor. Genome Announc 3(2):e00159-15. doi:10.1128/genomeA.00159-15.

REFERENCES

  • 1.Thavaselvam D, Vijayaraghavan R. 2010. Biological warfare agents. J Pharm Bioallied Sci 2:179–188. doi: 10.4103/0975-7406.68499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lim DV, Simpson JM, Kearns EA, Kramer MF. 2005. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607. doi: 10.1128/CMR.18.4.583-607.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Arun S, Neubauer H, Gürel A, Ayyildiz G, Kusçu B, Yesildere T, Meyer H, Hermanns W. 1999. Equine glanders in Turkey. Vet Rec 144:255–258. doi: 10.1136/vr.144.10.255. [DOI] [PubMed] [Google Scholar]
  • 4.Cheng AC, Currie BJ. 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383–416. doi: 10.1128/CMR.18.2.383-416.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lafontaine ER, Zimmerman SM, Shaffer TL, Michel F, Gao X, Hogan RJ. 2013. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice. PLoS One 8:e76804. doi: 10.1371/journal.pone.0076804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. 2009. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 33:1079–1099. doi: 10.1111/j.1574-6976.2009.00189.x. [DOI] [PubMed] [Google Scholar]
  • 7.Neubauer H, Meyer H, Finke E-J. 1997. Human glanders. Rev Int Serv Santé Forces Armées 70:258–265. [Google Scholar]
  • 8.Whitlock GC, Estes DM, Torres AG. 2007. Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett 277:115–122. doi: 10.1111/j.1574-6968.2007.00949.x. [DOI] [PubMed] [Google Scholar]
  • 9.Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4:272–282. doi: 10.1038/nrmicro1385. [DOI] [PubMed] [Google Scholar]
  • 10.Waag D, DeShazer D. 2005. Glanders: new insights into an Old disease, p 209–237. In Lindler L, Lebeda F, Korch G (ed), Biological weapons defense: infectious diseases and counterbioterrorism. Humana Press, Totowa, NJ. [Google Scholar]
  • 11.Wheelis M. 1998. First shots fired in biological warfare. Nature 395:213–213. doi: 10.1038/26089. [DOI] [PubMed] [Google Scholar]
  • 12.Sharrer GT. 1995. The great glanders epizootic, 1861–1866: a Civil War legacy. Agric Hist 69:79–97. [PubMed] [Google Scholar]
  • 13.Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM Jr. 1997. Biological warfare. A historical perspective. JAMA 278:412–417. doi: 10.1001/jama.1997.03550050074036. [DOI] [PubMed] [Google Scholar]
  • 14.Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM. 2004. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA 101:14246–14251. doi: 10.1073/pnas.0403306101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 16.Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe DB. 2008. ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 18:810–820. doi: 10.1101/gr.7337908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194. [PubMed] [Google Scholar]
  • 18.Ewing B, Hillier L, Wendl MC, Green P. 1998. Base-calling of automated sequencer traces UsingPhred. I. Accuracy assessment. Genome Res 8:175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  • 19.Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res 8:195–202. doi: 10.1101/gr.8.3.195. [DOI] [PubMed] [Google Scholar]
  • 20.Chain PS, Grafham DV, Fulton RS, FitzGerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T, Nelson KE, Parkhill J, Pitluck S, Qin X, Read TD, Schmutz J, Sozhamannan S, Sterk P, Strausberg RL, Sutton G, Thomson NR, Tiedje JM, Weinstock G, Wollam A, Genomic Standards Consortium Human Microbiome Project Jumpstart Consortium, Detter JC. 2009. Genomics. Genome project standards in a new era of sequencing. Science 326:236–237. doi: 10.1126/science.1180614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q. 2010. An Ergatis-based prokaryotic genome annotation web server. BioInformatics 26:1122–1124. doi: 10.1093/bioinformatics/btq090. [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES