Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1964 Aug;43(8):1704–1720. doi: 10.1172/JCI105046

Increased Cell Membrane Permeability in the Pathogenesis of Hereditary Spherocytosis *

Harry S Jacob 1,2, James H Jandl 1,2, Susan C Bell 1,2, Nancye M Files 1,2
PMCID: PMC441970  PMID: 14201554

Full text

PDF
1704

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., KATES M., JAMES A. T. An abnormality of blood lipids in hereditary spherocytosis. Br Med J. 1960 Dec 17;2(5215):1766–1768. doi: 10.1136/bmj.2.5215.1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERTLES J. F. Sodium transport across the surface membrane of red blood cells in hereditary spherocytosis. J Clin Invest. 1957 Jun;36(6 Pt 1):816–824. doi: 10.1172/JCI103487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEUTLER E. The glutathione instability of drug-sensitive red cells; a new method for the in vitro detection of drug sensitivity. J Lab Clin Med. 1957 Jan;49(1):84–95. [PubMed] [Google Scholar]
  4. CARSON P. E., TARLOV A. R. Biochemistry of hemolysis. Annu Rev Med. 1962;13:105–126. doi: 10.1146/annurev.me.13.020162.000541. [DOI] [PubMed] [Google Scholar]
  5. CHAPMAN R. G., HENNESSEY M. A., WALTERSDORPH A. M., HUENNEKENS F. M., GABRIO B. W. Erythrocyte metabolism. V. Levels of glycolytic enzymes and regulation of glycolysis. J Clin Invest. 1962 Jun;41:1249–1256. doi: 10.1172/JCI104587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DUNN I., IBSEN K. H., COE E. L., SCHNEIDER A. S., WEINSTEIN I. M. ERYTHROCYTE CARBOHYDRATE METABOLISM IN HEREDITARY SPHEROCYTOSIS. J Clin Invest. 1963 Oct;42:1535–1541. doi: 10.1172/JCI104838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FURTH F. W. Effect of spherocytosis on volume of trapped plasma in red cell column of capillary and Wintrobe hematocrits. J Lab Clin Med. 1956 Sep;48(3):421–430. [PubMed] [Google Scholar]
  9. GABRIO B. W., FINCH C. A., HUENNEKENS F. M. Erythrocyte preservation: a topic in molecular biochemistry. Blood. 1956 Feb;11(2):103–113. [PubMed] [Google Scholar]
  10. GLYNN I. M. The ionic permeability of the red cell membrane. Prog Biophys Biophys Chem. 1957;8:241–307. [PubMed] [Google Scholar]
  11. GOODNER C. J., FREINKEL N. Studies of anterior pituitary tissue in vitro: effects of insulin and experimental diabetes mellitus upon carbohydrate metabolism. J Clin Invest. 1961 Feb;40:261–272. doi: 10.1172/JCI104252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRIGGS R. C., WEISMAN R., Jr, HARRIS J. W. Alterations in osmotic and mechanical fragility related to in vivo erythrocyte aging and splenic sequestration in hereditary spherocytosis. J Clin Invest. 1960 Jan;39:89–101. doi: 10.1172/JCI104032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GRUNERT R. R., PHILLIPS P. H. A modification of the nitroprusside method of analysis for glutathione. Arch Biochem. 1951 Feb;30(2):217–225. [PubMed] [Google Scholar]
  14. HARRIS E. J., PRANKERD T. A. The rate of sodium extrusion from human erythrocytes. J Physiol. 1953 Sep;121(3):470–486. doi: 10.1113/jphysiol.1953.sp004959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HARRIS I. M., MCALISTER J. M., PRANKERD T. A. The relationship of abnormal red cells to the normal spleen. Clin Sci. 1957 May;16(2):223–230. [PubMed] [Google Scholar]
  16. HAUT A., TUDHOPE G. R., CARTWRIGHT G. E., WINTROBE M. M. Studies on the osmotic fragility of incubated normal and abnormal erythrocytes. J Clin Invest. 1962 Sep;41:1766–1775. doi: 10.1172/JCI104636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HOKIN L. E., HOKIN M. R. Phosphatidic acid metabolism and active transport of sodium. Fed Proc. 1963 Jan-Feb;22:8–18. [PubMed] [Google Scholar]
  18. JACOB H. S., JANDL J. H. Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hemolysis. J Clin Invest. 1962 Apr;41:779–792. doi: 10.1172/JCI104536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. JACOB H. S., JANDL J. H. Effects of sulfhydryl inhibition on red blood cells. II. Studies in vivo. J Clin Invest. 1962 Jul;41:1514–1523. doi: 10.1172/JCI104607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JANDL J. H., GREENBERG M. S., YONEMOTO R. H., CASTLE W. B. Clinical determination of the sites of red cell sequestration in hemolytic anemias. J Clin Invest. 1956 Aug;35(8):842–867. doi: 10.1172/JCI103338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KATES M., ALLISON A. C., JAMES A. T. Phosphatides of human blood cells and their role in spherocytosis. Biochim Biophys Acta. 1961 Apr 15;48:571–582. doi: 10.1016/0006-3002(61)90055-5. [DOI] [PubMed] [Google Scholar]
  22. LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
  23. MURPHY J. R. Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med. 1960 Feb;55:286–302. [PubMed] [Google Scholar]
  24. MURPHY J. R. Erythrocyte metabolism. V. Active cation transport and glycolysis. J Lab Clin Med. 1963 Apr;61:567–577. [PubMed] [Google Scholar]
  25. Maizels M. Cation control in human erythrocytes. J Physiol. 1949 May 15;108(3):247–263. [PMC free article] [PubMed] [Google Scholar]
  26. PHILLIPS G. B., ROOME N. S. Quantitative chromatographic analysis of the phospholipids of abnormal human red blood cells. Proc Soc Exp Biol Med. 1962 Feb;109:360–364. doi: 10.3181/00379727-109-27203. [DOI] [PubMed] [Google Scholar]
  27. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  28. PRANKERD T. A., ALTMAN K. I., YOUNG L. E. Abnormalities of carbohydrate metabolism of red cells in hereditary spherocytosis. J Clin Invest. 1955 Aug;34(8):1268–1275. doi: 10.1172/JCI103173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PRANKERD T. A. Inborn errors of metabolism in red cells of congenital hemolytic anemias. Am J Med. 1957 May;22(5):724–729. doi: 10.1016/0002-9343(57)90123-7. [DOI] [PubMed] [Google Scholar]
  30. PRANKERD T. A. Studies on the pathogenesis of haemolysis in hereditary spherocytosis. Q J Med. 1960 Apr;29:199–208. [PubMed] [Google Scholar]
  31. ROBINSON M. A., LODER P. B., DE GRUCHY G. C. Red-cell metabolism in non-spherocytic congenital haemolytic anaemia. Br J Haematol. 1961 Jul;7:327–339. doi: 10.1111/j.1365-2141.1961.tb00343.x. [DOI] [PubMed] [Google Scholar]
  32. Rose I. A., Warms J. V., O'Connell E. L. Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun. 1964 Feb 18;15(1):33–37. doi: 10.1016/0006-291x(64)90098-1. [DOI] [PubMed] [Google Scholar]
  33. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  34. SELWYN J. G., DACIE J. V. Autohemolysis and other changes resulting from the incubation in vitro of red cells from patients with congenital hemolytic anemia. Blood. 1954 May;9(5):414–438. [PubMed] [Google Scholar]
  35. SHEPPARD C. W., MARTIN W. R. Cation exchange between cells and plasma of mammalian blood; methods and application to potassium exchange in human blood. J Gen Physiol. 1950 Jul 20;33(6):703–722. doi: 10.1085/jgp.33.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  37. SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]
  39. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. YOUNG L. E., IZZO M. J., PLATZER R. F. Hereditary spherocytosis. I. Clinical, hematologic and genetic features in 28 cases, with particular reference to the osmotic and mechanical fragility of incubated erythrocytes. Blood. 1951 Nov;6(11):1073–1098. [PubMed] [Google Scholar]
  41. de GIER, VAN DEENEN L., GEERDINK R. A., PUNT K., VERLOOP M. C. Phosphatide patterns of normal, spherocytic and elliptocytic red blood cells. Biochim Biophys Acta. 1961 Jun 24;50:383–384. doi: 10.1016/0006-3002(61)90347-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES