Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2015 May 5;6:362. doi: 10.3389/fmicb.2015.00362

Getting a hold on archaeal type IV pili: an expanding repertoire of cellular appendages implicates complex regulation and diverse functions

Scott Chimileski 1,*, R Thane Papke 1
PMCID: PMC4419858  PMID: 25999922

Type IV pili (T4P) are a group of cell surface appendages of particular interest due to broad conservation and functional versatility across the domains Bacteria and Archaea (Albers and Meyer, 2011; Giltner et al., 2012). All T4P are composed of small protein subunits known as pilins that polymerize into helical fibers through the action of assembly ATPases (Giltner et al., 2012). This core ancestral machinery has been adapted in various lineages for many cellular processes–from adhesion and biofilm formation, to motility, horizontal gene transfer (HGT) and even electricity conduction (Giltner et al., 2012; Berry and Pelicic, 2015). When T4P structures are involved in adhesion, they are known as pili, if they no longer mediate attachment, but are associated with another function, such as scavenging macromolecules (e.g., DNA uptake by Com proteins in Bacillus subtilis), or secretion of proteins through a piston-like structure (i.e., type II secretion), they are called pseudopili (Averhoff and Friedrich, 2003; Peabody et al., 2003; Chen et al., 2005). T4P appendages may also contribute to both adhesion and another function. This dual function is sometimes true for archaella: a major group of archaeal T4P appendages characterized by the ability to rotate and enable swimming motility. Archaella are functionally analogous yet structurally and genetically unrelated to bacterial flagella (Jarrell and Albers, 2012; Shahapure et al., 2014; Albers and Jarrell, 2015). T4P have been studied to a greater extent in bacteria, in part because they are often virulence factors (Giltner et al., 2012). However, recent investigations have revealed a repertoire of archaeal T4P–highlighting implications for regulatory complexity and functional diversity.

Losensky et al. (2014) demonstrated that adhesive filaments in the haloarchaeon Halobacterium salinarum R1 observed during biofilm formation (Fröls et al., 2012) are dependent on the pilus assembly ATPase gene pilB1 (Losensky et al., 2014), expanding the list of experimentally studied archaeal T4P (Table 1). Deletion of pilB1 led to a lack of pili as observed through electron microscopy and a defect in adhesion. Only 4% of a glass surface was colonized by non-piliated/non-archaellated cells (ΔflaIpilB1), relative to 36 and 44% for the parental and non-archaellated (ΔflaI) strains, respectively. The molecular composition of PilB1-dependent pili has not yet been determined, however Losensky and coauthors noted that there are over 30 candidate pilins in the Hbt. salinarum R1 genome, as indicated by the class III signal peptide prediction program FlaFind (Szabó et al., 2007b). FlaFind was used previously to show that most archaeal genomes contain many pilin/archaellin homologs (Szabó et al., 2007b; Esquivel et al., 2013). For example, Haloarcula marismortui and Haloferax volcanii have nearly 50 putative pilin/archaellin precursors (Esquivel et al., 2013).

Table 1.

Experimentally studied type IV pili in archaeal species: archaella, adhesive pili, and pseudopilia.

Structure name Function/associated phenotype Characterized in (genera) Filament diameter (nm) References
ARCHAELLA
Swimming motility and involved in adhesion in some species; functionally analogous but evolutionarily and structurally distinct from the bacterial flagellab Halobacterium 10–15 Alam and Oesterhelt, 1984; Gerl and Sumper, 1988; Patenge et al., 2001; Streif et al., 2008
Haloferax Tripepi et al., 2010, 2012, 2013
Haloquadratum Alam et al., 1984
Sulfolobus Szabó et al., 2007a; Lassak et al., 2012b; Shahapure et al., 2014
Methanococcus Bardy et al., 2002; Jarrell et al., 2011
Methanocaldococcus Bellack et al., 2011
Pyrococcus Nather et al., 2006; Nather-Schindler et al., 2014
ADHESIVE PILI
Archaeal adhesive pilus (Aap) Surface adhesion Sulfolobus 11 Henche et al., 2012
Type IV pilus (Epd) Surface adhesion Methanococcus 8.5 Vandyke et al., 2008; Wang et al., 2008; Nair et al., 2013
Type IV pilus (PilA) Surface adhesion Haloferax 8–12 Esquivel et al., 2013; Esquivel and Pohlschröder, 2014, 2015
PilB1-dependent adhesive pilus-likec Surface adhesion Halobacterium 7–8 Losensky et al., 2014
UV-inducible pilus (Ups) Autoaggregation and species specific DNA exchange following UV-irradiation Sulfolobus 10 Fröls et al., 2008; Ajon et al., 2011
PSEUDOPILUS-LIKE
Bindosome assembly system (Bas) Sugar binding; also involved in cellular morphology and S-layer architecture Sulfolobus ND Zolghadr et al., 2007, 2011

ND, not determined.

a

As reviewed by Pohlschröder et al. (2011), Lassak et al. (2012a), Jarrell et al. (2013) and Esquivel and Pohlschröder (2015).

b

See Jarrell and Albers (2012), Shahapure et al. (2014) and Albers and Jarrell (2015) for a review of how the archaellum came to be recognized as a unique archaeal motility structure, including a more comprehensive categorization of characterized archaella.

c

The appendages characterized by Losensky et al. (2014) are listed as pilus-like because they have yet to be purified and biochemically verified. They may in fact be composed of homologs of PilA pilin proteins in H. volcanii, which are found in many euryarchaeal species (Esquivel et al., 2013).

Some of these pilins could be associated with additional functions. Hfx. volcanii has an ability for social motility in static liquid (Chimileski et al., 2014) and T4P could be involved in this activity (Esquivel and Pohlschröder, 2015), whereby they may attach to extracellular matrix along the substratum, similar to the S-motility system that pulls Myxococcus xanthus cells forward (Hodgkin and Kaiser, 1979; Zusman et al., 2007). There could be more archaeal T4P-related surface structures that scavenge macromolecules as well, like the bindosome of Sulfolobus solfataricus (Zolghadr et al., 2007, 2011).

Investigations of archaeal T4P leave open the possibility for undiscovered mechanisms for contacting abiotic surfaces or other cells. For instance, even in the non-piliated/non-archaellated Hbt. salinarum strain, adhesion was not completely abolished (Losensky et al., 2014). Similar residual adhesion has been observed in Hfx. volcanii (Tripepi et al., 2010, 2013). In both cases, pilins that remain present in the membrane but cannot be assembled into pili without the assembly ATPase(s) likely explain low levels of adhesion (Esquivel and Pohlschröder, 2014). There are two other cell-to-cell contact phenomena in Hfx. volcanii that do not require archaella or pili: Ca2+ dependent autoaggregation (Tripepi et al., 2010), and an HGT mechanism known as mating (Rosenshine et al., 1989; Tripepi et al., 2010; Naor et al., 2012). Additional types of extracellular polymers or fibers found in bacterial species could be present in archaea, such as amyloid protein (Chimileski et al., 2014). Unusual, genetically ambiguous non-T4P structures have already been observed in other archaeal species, including the hamus of the SM1 euryarchaeon (Moissl et al., 2005; Perras et al., 2014) and the cannulae of Pyrodictium cells (Nickell et al., 2003).

A plausible explanation for having a wide array of appendages is a capacity for differential regulation (Jarrell, 2012; Lassak et al., 2012a; Jarrell et al., 2013). Indeed, a number of studies point to dynamic regulatory systems controlling archaeal T4P. In Hbt. salinarum, pilB1 expression was upregulated relative to flaI in adherent cells (Losensky et al., 2014), suggesting archaella and pili have antagonistically regulated functions in motility (when a planktonic state is favorable) and for adhesion (during biofilm formation), as in Hfx. volcanii (Tripepi et al., 2010; Esquivel and Pohlschröder, 2014, 2015). Haloarcula marismortui has two archaellins that are expressed under different temperatures and salinities (Syutkin et al., 2014), termed ecoparalogs. Likewise, the six Hfx. volcanii pilA paralogs, any one of which can restore adhesion when expressed in a null mutant [ΔpilA(1–6)] (Esquivel et al., 2013), may be ecoparalogs as well. Intriguingly, deleting flgA2, one of two archaellin genes in Hfx. volcanii, produced a hypermotile phenotype, rather than a motility defect (Tripepi et al., 2013). Archaellins are also regulated through N-glycosylation (Guan et al., 2012; Tripepi et al., 2012) and regulatory proteins controlling adhesive pili and archaella have been identified in Sulfolobus acidocaldarius (Reimann et al., 2012; Orell et al., 2013; Vassart et al., 2013).

As more T4P are described in archaeal groups, a common theme is appearing. A multitude of individual pilins/archaellins from one or more loci may appear to be redundant–contributing to appendages that are difficult to differentiate through electron microscopy and often depend on the same assembly ATPase. However, to the contrary, the maintenance of more than one pilus and archaellum subunit gene is likely due to a complex regulatory network and the corresponding advantages of functional versatility. Subsets of pilins may be expressed in different combinations as a response to a variety of specific environmental conditions and/or cellular functions.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

RTP was supported by the National Science Foundation (award numbers DEB-0910290 and DEB-0830024) and the NASA Astrobiology: Exobiology and Evolutionary Biology Program (grant number NNX12AD70G).

References

  1. Ajon M., Fröls S., Van Wolferen M., Stoecker K., Teichmann D., Driessen A. J., et al. (2011). UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol. 82, 807–817. 10.1111/j.1365-2958.2011.07861.x [DOI] [PubMed] [Google Scholar]
  2. Alam M., Claviez M., Oesterhelt D., Kessel M. (1984). Flagella and motility behavior of square bacteria. EMBO J. 3, 2899–2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alam M., Oesterhelt D. (1984). Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459–475. [DOI] [PubMed] [Google Scholar]
  4. Albers S.-V., Jarrell K. F. (2015). The archaellum: how archaea swim. Front. Microbiol. 6:23. 10.3389/fmicb.2015.00023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Albers S. V., Meyer B. H. (2011). The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426. 10.1038/nrmicro2576 [DOI] [PubMed] [Google Scholar]
  6. Averhoff B., Friedrich A. (2003). Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch. Microbiol. 180, 385–393. 10.1007/s00203-003-0616-6 [DOI] [PubMed] [Google Scholar]
  7. Bardy S. L., Mori T., Komoriya K., Aizawa S. I., Jarrell K. F. (2002). Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. J. Bacteriol. 184, 5223–5233. 10.1128/jb.184.19.5223-5233.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bellack A., Huber H., Rachel R., Wanner G., Wirth R. (2011). Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int. J. Syst. Evol. Microbiol. 61, 1239–1245. 10.1099/ijs.0.023663-0 [DOI] [PubMed] [Google Scholar]
  9. Berry J. L., Pelicic V. (2015). Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 1–21. 10.1093/femsre/fuu001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen I., Christie P. J., Dubnau D. (2005). The ins and outs of DNA transfer in bacteria. Science 310, 1456–1460. 10.1126/science.1114021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chimileski S., Franklin M. J., Papke R. T. (2014). Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentitaion and social motility, and facilitate horizontal gene transfer. BMC Biol. 12:65. 10.1186/s12915-014-0065-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Esquivel R. N., Pohlschröder M. (2014). A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility. Mol. Microbiol. 93, 494–504. 10.1111/mmi.12673 [DOI] [PubMed] [Google Scholar]
  13. Esquivel R. N., Pohlschröder M. (2015). Archaeal type IV pili and their involvement in biofilm formation. Front. Microbiol. 6:190. 10.3389/fmicb.2015.00190 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Esquivel R. N., Xu R., Pohlschröder M. (2013). Novel archaeal adhesion pilins with a conserved N terminus. J. Bacteriol. 195, 3808–3818. 10.1128/JB.00572-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fröls S., Ajon M., Wagner M., Teichmann D., Zolghadr B., Folea M., et al. (2008). UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70, 938–952. 10.1111/j.1365-2958.2008.06459.x [DOI] [PubMed] [Google Scholar]
  16. Fröls S., Dyall-Smith M., Pfeifer F. (2012). Biofilm formation by haloarchaea. Environ. Microbiol. 14, 3159–3174. 10.1111/j.1462-2920.2012.02895.x [DOI] [PubMed] [Google Scholar]
  17. Gerl L., Sumper M. (1988). Halobacterial flagellins are encoded by a multigene family. J. Biol. Chem. 263, 13246–13251. [PubMed] [Google Scholar]
  18. Giltner C. L., Nguyen Y., Burrows L. L. (2012). Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772. 10.1128/MMBR.00035-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guan Z., Naparstek S., Calo D., Eichler J. (2012). Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ. Microbiol. 14, 743–753. 10.1111/j.1462-2920.2011.02625.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henche A. L., Ghosh A., Yu X., Jeske T., Egelman E., Albers S. V. (2012). Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ. Microbiol. 14, 3188–3202. 10.1111/j.1462-2920.2012.02898.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hodgkin J., Kaiser D. (1979). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Gentics 171, 177–191 10.1007/BF00270004 [DOI] [Google Scholar]
  22. Jarrell K. F. (2012). Control of archaellation in Sulfolobus acidocaldarius: unravelling of the regulation of surface structure biosynthesis in Archaea begins. Mol. Microbiol. 86, 1–5. 10.1111/j.1365-2958.2012.08191.x [DOI] [PubMed] [Google Scholar]
  23. Jarrell K. F., Albers S. V. (2012). The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312. 10.1016/j.tim.2012.04.007 [DOI] [PubMed] [Google Scholar]
  24. Jarrell K. F., Stark M., Nair D. B., Chong J. P. (2011). Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces. FEMS Microbiol. Lett. 319, 44–50. 10.1111/j.1574-6968.2011.02264.x [DOI] [PubMed] [Google Scholar]
  25. Jarrell K. F., Ding Y., Nair D. B., Siu S. (2013). Surface appendages of Archaea: structure, function, genetics and assembly. Life 3, 86–117. 10.3390/life3010086 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lassak K., Ghosh A., Albers S. V. (2012a). Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res. Microbiol. 163, 630–644. 10.1016/j.resmic.2012.10.024 [DOI] [PubMed] [Google Scholar]
  27. Lassak K., Neiner T., Ghosh A., Klingl A., Wirth R., Albers S. V. (2012b). Molecular analysis of the crenarchaeal flagellum. Mol. Microbiol. 83, 110–124. 10.1111/j.1365-2958.2011.07916.x [DOI] [PubMed] [Google Scholar]
  28. Losensky G., Vidakovic L., Klingl A., Pfeifer F., Fröls S. (2014). Novel pili-like surface structures of Halobacterium salinarum strain R1 are crucial for surface adhesion. Front. Microbiol. 5:755. 10.3389/fmicb.2014.00755 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moissl C., Rachel R., Briegel A., Engelhardt H., Huber R. (2005). The unique structure of archaeal “hami,” highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370. 10.1111/j.1365-2958.2005.04294.x [DOI] [PubMed] [Google Scholar]
  30. Nair D. B., Chung D. K., Schneider J., Uchida K., Aizawa S., Jarrell K. F. (2013). Identification of an additional minor pilin essential for piliation in the archaeon Methanococcus maripaludis. PLoS ONE 8:e83961. 10.1371/journal.pone.0083961 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Naor A., Lapierre P., Mevarech M., Papke R. T., Gophna U. (2012). Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448. 10.1016/j.cub.2012.05.056 [DOI] [PubMed] [Google Scholar]
  32. Nather D. J., Rachel R., Wanner G., Wirth R. (2006). Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J. Bacteriol. 188, 6915–6923. 10.1128/JB.00527-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nather-Schindler D. J., Schopf S., Bellack A., Rachel R., Wirth R. (2014). Pyrococcus furiosus flagella: biochemical and transcriptional analyses identify the newly detected flaB0 gene to encode the major flagellin. Front. Microbiol. 5:695. 10.3389/fmicb.2014.00695 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nickell S., Hergel R., Baumeisiter W., Rachel R. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141, 34–42. 10.1016/S1047-8477(02)00581-6 [DOI] [PubMed] [Google Scholar]
  35. Orell A., Peeters E., Vassen V., Jachlewski S., Schalles S., Siebers B., et al. (2013). Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J. 7, 1886–1898. 10.1038/ismej.2013.68 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Patenge N., Berendes A., Engelhardt H., Schuster S. C., Oesterhelt D. (2001). The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol. Microbiol. 41, 653–663. 10.1046/j.1365-2958.2001.02542.x [DOI] [PubMed] [Google Scholar]
  37. Peabody C. R., Chung Y. J., Yen M. R., Vidal-Ingigliardi D., Pugsley A. P., Saier M. H. (2003). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072. 10.1099/mic.0.26364-0 [DOI] [PubMed] [Google Scholar]
  38. Perras A. K., Wanner G., Klingl A., Mora M., Auerbach A. K., Heinz V., et al. (2014). Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Front. Microbiol. 5:397. 10.3389/fmicb.2014.00397 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pohlschröder M., Ghosh A., Tripepi M., Albers S. V. (2011). Archaeal type IV pilus-like structures–evolutionarily conserved prokaryotic surface organelles. Curr. Opin. Microbiol. 14, 357–363. 10.1016/j.mib.2011.03.002 [DOI] [PubMed] [Google Scholar]
  40. Reimann J., Lassak K., Khadouma S., Ettema T. J., Yang N., Driessen A. J., et al. (2012). Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol. Microbiol. 86, 24–36. 10.1111/j.1365-2958.2012.08186.x [DOI] [PubMed] [Google Scholar]
  41. Rosenshine I., Tchelet R., Mevarech M. (1989). The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389. [DOI] [PubMed] [Google Scholar]
  42. Shahapure R., Driessen R. P., Haurat M. F., Albers S. V., Dame R. T. (2014). The archaellum: a rotating type IV pilus. Mol. Microbiol. 91, 716–723. 10.1111/mmi.12486 [DOI] [PubMed] [Google Scholar]
  43. Streif S., Staudinger W. F., Marwan W., Oesterhelt D. (2008). Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384, 1–8. 10.1016/j.jmb.2008.08.057 [DOI] [PubMed] [Google Scholar]
  44. Syutkin A. S., Pyatibratov M. G., Galzitskaya O. V., Rodriguez-Valera F., Fedorov O. V. (2014). Haloarcula marismortui archaellin genes as ecoparalogs. Extremophiles 18, 341–349. 10.1007/s00792-013-0619-4 [DOI] [PubMed] [Google Scholar]
  45. Szabó Z., Sani M., Groeneveld M., Zolghadr B., Schelert J., Albers S. V., et al. (2007a). Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 189, 4305–4309. 10.1128/JB.00042-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Szabó Z., Stahl A. O., Albers S. V., Kissinger J. C., Driessen A. J., Pohlschröder M. (2007b). Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189, 772–778. 10.1128/JB.01547-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tripepi M., Esquivel R. N., Wirth R., Pohlschröder M. (2013). Haloferax volcanii cells lacking the flagellin FlgA2 are hypermotile. Microbiology 159, 2249–2258. 10.1099/mic.0.069617-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tripepi M., Imam S., Pohlschröder M. (2010). Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 192, 3093–3102. 10.1128/JB.00133-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tripepi M., You J., Temel S., Onder O., Brisson D., Pohlschröder M. (2012). N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J. Bacteriol. 194, 4876–4887. 10.1128/JB.00731-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vandyke D. J., Wu J., Ng S. Y., Kanbe M., Chaban B., Aizawa S., et al. (2008). Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis. J. Bacteriol. 190, 5300–5307. 10.1128/JB.00474-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vassart A., Van Wolferen M., Orell A., Hong Y., Peeters E., Albers S. V., et al. (2013). Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiologyopen 2, 75–93. 10.1002/mbo3.58 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wang Y. A., Yu X., Ng S. Y., Jarrell K. F., Egelman E. H. (2008). The structure of an archaeal pilus. J. Mol. Biol. 381, 456–466. 10.1016/j.jmb.2008.06.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zolghadr B., Klingl A., Rachel R., Driessen A. J., Albers S. V. (2011). The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15, 235–244. 10.1007/s00792-010-0353-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zolghadr B., Weber S., Szabó Z., Driessen A. J., Albers S. V. (2007). Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol. Microbiol. 64, 795–806. 10.1111/j.1365-2958.2007.05697.x [DOI] [PubMed] [Google Scholar]
  55. Zusman D. R., Scott A. E., Yang Z., Kirby J. R. (2007). Chemosensory pathways, motility and development in Myxococcus xanthus. Nat. Rev. Microbiol. 5, 862–872. 10.1038/nrmicro1770 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES