Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 11;71(Pt 5):m106–m107. doi: 10.1107/S2056989015006180

Crystal structure of tricarbon­yltris(pyri­dine-κN)rhenium(I) tetra­fluorido­borate

Adebomi A Ikotun a, Micheal P Coogan b,c, Abimbola A Owoseni d, Nattamai Bhuvanesh e, Gabriel O Egharevba f,*
PMCID: PMC4420038  PMID: 25995887

Abstract

In the title compound, [Re(C6H5N)3(CO)3]BF4, the ReI ion is six-coordinated by three pyridine N atoms and three carbonyl C atoms. In each case, the carbonyl C atom lies trans to a pyridine N atom. In the crystal, the ions are linked via C—H⋯F hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional framework. The F atoms of the BF4 anion are disordered over two positions and gave a final refined occupancy ratio of 0.705 (11):0.295 (11).

Keywords: crystal structure, rhenium(I) tricarbonyl complexes, tricarbonyl tris-pyridyl rhenium(I) cation, luminescent agent.

Related literature  

For background to rhenium tricarbonyl complexes, see: Amoroso et al. (2008); Coogan et al. (2009). For the structure of tricarbonyl tris-pyridyl rhenium(I) hexa­fluoro­phosphate, see: Franklin et al. (2008). For the preparation of [Re(C14H10N2O)(CO)3Br] used in the synthesis, see: Al Subari et al. (2010); Coogan et al. (2009).graphic file with name e-71-0m106-scheme1.jpg

Experimental  

Crystal data  

  • [Re(C6H5N)3(CO)3]BF4

  • M r = 594.34

  • Monoclinic, Inline graphic

  • a = 8.1272 (12) Å

  • b = 18.718 (3) Å

  • c = 13.046 (2) Å

  • β = 97.317 (9)°

  • V = 1968.5 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 12.66 mm−1

  • T = 110 K

  • 0.08 × 0.06 × 0.02 mm

Data collection  

  • Bruker GADDS D8 Discover diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006) T min = 0.431, T max = 0.786

  • 39315 measured reflections

  • 2891 independent reflections

  • 2589 reflections with I > 2σ(I)

  • R int = 0.052

  • θmax = 60.0°

  • Standard reflections: 0

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.048

  • S = 1.11

  • 2891 reflections

  • 308 parameters

  • 172 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.98 e Å−3

Data collection: APEX2 and FRAMBO (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015006180/su5093sup1.cif

e-71-0m106-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006180/su5093Isup2.hkl

e-71-0m106-Isup2.hkl (141.9KB, hkl)

. DOI: 10.1107/S2056989015006180/su5093fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015006180/su5093fig2.tif

Preparation of the title compound.

CCDC reference: 1022851

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths ().

Re1C3 1.916(5)
Re1C1 1.924(5)
Re1C2 1.926(5)
Re1N1 2.215(3)
Re1N2 2.229(4)
Re1N3 2.240(4)

Table 2. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the N1/C4C8 pyrdine ring.

DHA DH HA D A DHA
C4H4AF3i 0.95 2.31 3.240(7) 165
C13H13AF4ii 0.95 2.31 3.219(12) 160
C17H17AF3iii 0.95 2.32 3.123(7) 142
C10H10A Cg1iv 0.95 2.61 3.302(5) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank Professor John A. Gladysz for providing facilities for a portion of these studies, and helpful discussions. The US National Science Foundation (NSF, CHE1153085) is thanked for the portion of the research carried out at Texas A & M University.

supplementary crystallographic information

S1. Comment

Amoroso and coworkers (Amoroso et al., 2008) prepared a novel 3-chloromethylpyridyl bipyridine tricarbonyl rhenium complex and demonstrated the suitability of this complex in Mitochondria. That report represents the first application of a luminescent agent for specific targeting of a biological entity in imaging. Recently, Coogan and co-workers (Coogan et al., 2009) have also directed their research focus towards such complexes, thus preparing more novel rhenium tricarbonyl compounds to prove that heavy metals are not only erroneously termed as poisons, but can also be useful towards preparing drugs of great biological significance to man. Thus the design, syntheses and characterization of rhenium(I) tricarbonyl complexes has being of great interest due to their biological significance. The first report of the tricarbonyl tris-pyridyl rhenium(I) cation was published by Franklin et al. (2008), viz. tricarbonyl tris-pyridyl rhenium(I) hexafluorophosphate, which is quite similar to the title compound with some slight differences.

The molecular structure of the title complex is illustrated in Fig. 1. The ReI ion is six-coordinated by three pyridine N atoms and three carbonyl C atoms.

In the crystal, the ions are linked via C-H···F hydrogen bonds and C-H···π interactions forming a three-dimensional framework (Table 1).

S2. Experimental

The preparation of the title compound is illustrated in Fig. 2. [Re(C14H10N2O)(CO)3Br] (0.16 g, 0.28 mmol), prepared according to literature procedures (Al Subari et al., 2010; Coogan et al., 2009), was reacted with AgBF4 (0.05 g, 0.28 mmol) in 11 ml diethyl ether under nitrogen with refluxing for 35 min. The solution was then filtered through celite and to the clear filtrate pyridine (0.023 ml, 0.28 mmol) was added. The mixture was stirred for ca. 24 h. After it was poured into a vial and petroleum ether was added drop wise in excess to precipitate out the complex. This was covered with perforated foil and left overnight in the hood. Colourless block-like crystals grew on the sides of the vial.

S3. Refinement

C-bound H atoms were placed in idealized positions and refined using a riding model: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The F atoms of the BF4 showed significant elongation in the thermal ellipsoids suggesting disorder over two positions; final refined occupancy ratio = 0.705 (11):0.295 (11).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Preparation of the title compound.

Crystal data

[Re(C6H5N)3(CO)3]BF4 F(000) = 1136
Mr = 594.34 Dx = 2.005 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybc Cell parameters from 2921 reflections
a = 8.1272 (12) Å θ = 4.2–62.4°
b = 18.718 (3) Å µ = 12.66 mm1
c = 13.046 (2) Å T = 110 K
β = 97.317 (9)° Block, colourless
V = 1968.5 (5) Å3 0.08 × 0.06 × 0.02 mm
Z = 4

Data collection

Bruker GADDS D8 Discover diffractometer 2891 independent reflections
Radiation source: fine-focus sealed tube 2589 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
phi and ω scans θmax = 60.0°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2006) h = −9→9
Tmin = 0.431, Tmax = 0.786 k = −21→21
39315 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0131P)2 + 6.6179P] where P = (Fo2 + 2Fc2)/3
2891 reflections (Δ/σ)max = 0.001
308 parameters Δρmax = 0.98 e Å3
172 restraints Δρmin = −0.98 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Re1 0.90696 (2) 0.817237 (10) 0.800171 (15) 0.01465 (7)
C1 1.1344 (6) 0.8090 (2) 0.8614 (3) 0.0212 (10)
C2 0.9740 (5) 0.9040 (2) 0.7377 (3) 0.0188 (10)
C3 0.9626 (5) 0.7679 (2) 0.6806 (4) 0.0187 (10)
C4 0.5751 (6) 0.8920 (2) 0.7123 (3) 0.0209 (10)
H4A 0.6364 0.9327 0.7387 0.025*
C5 0.4181 (6) 0.9021 (3) 0.6613 (4) 0.0235 (10)
H5A 0.3714 0.9486 0.6534 0.028*
C6 0.3314 (6) 0.8441 (3) 0.6224 (4) 0.0253 (10)
H6A 0.2237 0.8500 0.5857 0.030*
C7 0.3993 (6) 0.7762 (3) 0.6360 (4) 0.0255 (11)
H7A 0.3388 0.7352 0.6100 0.031*
C8 0.5569 (5) 0.7699 (2) 0.6884 (3) 0.0190 (10)
H8A 0.6045 0.7236 0.6978 0.023*
C9 0.7018 (6) 0.7040 (2) 0.9139 (3) 0.0223 (11)
H9A 0.6199 0.7405 0.9073 0.027*
C10 0.6690 (6) 0.6415 (2) 0.9644 (3) 0.0226 (11)
H10A 0.5663 0.6355 0.9910 0.027*
C11 0.7859 (6) 0.5882 (2) 0.9758 (4) 0.0255 (11)
H11A 0.7674 0.5452 1.0112 0.031*
C12 0.9321 (6) 0.5994 (2) 0.9336 (4) 0.0246 (11)
H12A 1.0154 0.5635 0.9392 0.030*
C13 0.9560 (6) 0.6625 (2) 0.8837 (4) 0.0221 (11)
H13A 1.0565 0.6691 0.8548 0.027*
C14 0.6690 (6) 0.8790 (2) 0.9558 (4) 0.0233 (11)
H14A 0.5847 0.8586 0.9074 0.028*
C15 0.6234 (6) 0.9127 (3) 1.0420 (4) 0.0289 (12)
H15A 0.5100 0.9150 1.0526 0.035*
C16 0.7436 (6) 0.9430 (3) 1.1123 (4) 0.0295 (12)
H16A 0.7151 0.9666 1.1720 0.035*
C17 0.9070 (6) 0.9383 (2) 1.0939 (4) 0.0264 (11)
H17A 0.9930 0.9586 1.1412 0.032*
C18 0.9439 (6) 0.9040 (2) 1.0070 (4) 0.0217 (10)
H18A 1.0567 0.9014 0.9952 0.026*
N1 0.6466 (4) 0.82675 (18) 0.7269 (3) 0.0160 (8)
N2 0.8427 (4) 0.71536 (18) 0.8741 (3) 0.0173 (8)
N3 0.8279 (4) 0.87363 (19) 0.9373 (3) 0.0179 (8)
O1 1.2715 (4) 0.80628 (18) 0.8956 (3) 0.0309 (8)
O2 1.0248 (4) 0.95285 (17) 0.6991 (2) 0.0273 (8)
O3 0.9949 (4) 0.74082 (17) 0.6064 (2) 0.0255 (7)
B1 0.3395 (7) 0.5865 (3) 0.7653 (5) 0.0338 (14) 0.705 (11)
F1 0.5081 (9) 0.5915 (5) 0.7637 (9) 0.056 (3) 0.705 (11)
F2 0.3088 (9) 0.5538 (3) 0.8585 (5) 0.0468 (17) 0.705 (11)
F3 0.2785 (6) 0.5397 (3) 0.6835 (4) 0.0522 (18) 0.705 (11)
F4 0.2648 (13) 0.6503 (3) 0.7527 (8) 0.082 (3) 0.705 (11)
B1A 0.3395 (7) 0.5865 (3) 0.7653 (5) 0.0338 (14) 0.295 (11)
F1A 0.5017 (19) 0.5630 (8) 0.776 (2) 0.026 (4) 0.295 (11)
F2A 0.236 (2) 0.5462 (8) 0.8115 (18) 0.061 (5) 0.295 (11)
F3A 0.2854 (15) 0.5990 (11) 0.6583 (9) 0.069 (6) 0.295 (11)
F4A 0.3349 (16) 0.6580 (6) 0.8070 (12) 0.035 (3) 0.295 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01373 (11) 0.01449 (11) 0.01556 (11) −0.00004 (9) 0.00123 (7) −0.00028 (9)
C1 0.029 (3) 0.022 (2) 0.014 (2) 0.001 (2) 0.004 (2) 0.000 (2)
C2 0.014 (2) 0.022 (2) 0.019 (2) 0.003 (2) −0.003 (2) −0.007 (2)
C3 0.012 (2) 0.017 (2) 0.026 (3) −0.0014 (18) −0.001 (2) 0.008 (2)
C4 0.024 (3) 0.018 (2) 0.021 (3) 0.000 (2) 0.004 (2) 0.000 (2)
C5 0.020 (2) 0.028 (2) 0.024 (2) 0.0068 (19) 0.007 (2) 0.005 (2)
C6 0.015 (2) 0.032 (2) 0.027 (2) −0.0113 (18) −0.0049 (19) 0.005 (2)
C7 0.025 (3) 0.029 (2) 0.022 (2) −0.010 (2) −0.001 (2) 0.003 (2)
C8 0.022 (3) 0.017 (2) 0.017 (2) −0.0016 (19) 0.001 (2) 0.000 (2)
C9 0.022 (3) 0.023 (2) 0.021 (3) −0.001 (2) 0.001 (2) −0.002 (2)
C10 0.026 (3) 0.023 (3) 0.020 (3) −0.005 (2) 0.006 (2) 0.006 (2)
C11 0.037 (3) 0.019 (2) 0.021 (3) −0.005 (2) 0.002 (2) 0.000 (2)
C12 0.029 (3) 0.016 (2) 0.027 (3) 0.004 (2) −0.001 (2) −0.002 (2)
C13 0.017 (2) 0.025 (3) 0.024 (3) 0.003 (2) 0.003 (2) −0.004 (2)
C14 0.023 (3) 0.027 (3) 0.020 (3) −0.005 (2) 0.002 (2) 0.000 (2)
C15 0.030 (3) 0.030 (3) 0.031 (3) −0.001 (2) 0.015 (2) −0.004 (2)
C16 0.036 (3) 0.027 (3) 0.028 (3) −0.003 (2) 0.013 (2) −0.012 (2)
C17 0.031 (3) 0.023 (3) 0.025 (3) −0.008 (2) 0.000 (2) −0.008 (2)
C18 0.021 (3) 0.018 (2) 0.025 (3) −0.001 (2) 0.001 (2) 0.003 (2)
N1 0.0159 (19) 0.0144 (19) 0.0174 (19) −0.0027 (15) 0.0015 (15) 0.0026 (16)
N2 0.020 (2) 0.0159 (18) 0.0159 (19) 0.0004 (16) 0.0010 (16) −0.0024 (16)
N3 0.021 (2) 0.0170 (19) 0.015 (2) −0.0008 (16) 0.0030 (17) 0.0034 (16)
O1 0.0159 (19) 0.042 (2) 0.033 (2) 0.0020 (15) −0.0057 (16) 0.0022 (17)
O2 0.0305 (19) 0.0204 (17) 0.0315 (19) −0.0066 (15) 0.0058 (16) 0.0017 (16)
O3 0.0288 (19) 0.0264 (18) 0.0222 (18) −0.0004 (15) 0.0060 (15) −0.0044 (16)
B1 0.025 (3) 0.031 (3) 0.048 (4) −0.004 (3) 0.013 (3) −0.005 (3)
F1 0.034 (3) 0.092 (8) 0.045 (5) −0.021 (4) 0.014 (3) −0.029 (6)
F2 0.045 (4) 0.035 (3) 0.063 (4) −0.007 (3) 0.016 (3) 0.006 (3)
F3 0.044 (3) 0.043 (4) 0.062 (3) −0.008 (2) −0.019 (2) 0.001 (3)
F4 0.121 (7) 0.036 (3) 0.106 (7) 0.031 (4) 0.075 (6) 0.029 (4)
B1A 0.025 (3) 0.031 (3) 0.048 (4) −0.004 (3) 0.013 (3) −0.005 (3)
F1A 0.017 (5) 0.023 (8) 0.043 (8) 0.003 (5) 0.017 (5) −0.001 (7)
F2A 0.031 (8) 0.032 (6) 0.130 (15) −0.009 (6) 0.044 (9) −0.002 (9)
F3A 0.038 (7) 0.111 (16) 0.054 (6) 0.018 (7) −0.010 (5) −0.010 (7)
F4A 0.028 (7) 0.017 (5) 0.059 (9) 0.009 (4) 0.001 (6) 0.009 (5)

Geometric parameters (Å, º)

Re1—C3 1.916 (5) C10—C11 1.372 (7)
Re1—C1 1.924 (5) C10—H10A 0.9500
Re1—C2 1.926 (5) C11—C12 1.387 (7)
Re1—N1 2.215 (3) C11—H11A 0.9500
Re1—N2 2.229 (4) C12—C13 1.376 (6)
Re1—N3 2.240 (4) C12—H12A 0.9500
C1—O1 1.148 (5) C13—N2 1.346 (6)
C2—O2 1.146 (5) C13—H13A 0.9500
C3—O3 1.152 (5) C14—N3 1.348 (6)
C4—N1 1.355 (6) C14—C15 1.381 (7)
C4—C5 1.375 (6) C14—H14A 0.9500
C4—H4A 0.9500 C15—C16 1.375 (7)
C5—C6 1.356 (7) C15—H15A 0.9500
C5—H5A 0.9500 C16—C17 1.382 (7)
C6—C7 1.389 (7) C16—H16A 0.9500
C6—H6A 0.9500 C17—C18 1.369 (7)
C7—C8 1.378 (6) C17—H17A 0.9500
C7—H7A 0.9500 C18—N3 1.349 (6)
C8—N1 1.350 (5) C18—H18A 0.9500
C8—H8A 0.9500 B1—F4 1.340 (8)
C9—N2 1.334 (6) B1—F1 1.376 (9)
C9—C10 1.385 (6) B1—F2 1.412 (8)
C9—H9A 0.9500 B1—F3 1.420 (7)
C3—Re1—C1 89.17 (18) C10—C11—C12 117.7 (4)
C3—Re1—C2 87.34 (18) C10—C11—H11A 121.2
C1—Re1—C2 86.22 (18) C12—C11—H11A 121.2
C3—Re1—N1 89.95 (16) C13—C12—C11 119.8 (4)
C1—Re1—N1 178.97 (16) C13—C12—H12A 120.1
C2—Re1—N1 93.21 (15) C11—C12—H12A 120.1
C3—Re1—N2 91.85 (15) N2—C13—C12 122.6 (4)
C1—Re1—N2 91.02 (16) N2—C13—H13A 118.7
C2—Re1—N2 177.13 (16) C12—C13—H13A 118.7
N1—Re1—N2 89.54 (13) N3—C14—C15 122.9 (4)
C3—Re1—N3 176.99 (16) N3—C14—H14A 118.6
C1—Re1—N3 93.69 (16) C15—C14—H14A 118.6
C2—Re1—N3 93.77 (16) C16—C15—C14 119.3 (5)
N1—Re1—N3 87.20 (13) C16—C15—H15A 120.3
N2—Re1—N3 87.18 (12) C14—C15—H15A 120.3
O1—C1—Re1 177.4 (4) C15—C16—C17 118.4 (4)
O2—C2—Re1 174.7 (4) C15—C16—H16A 120.8
O3—C3—Re1 177.1 (4) C17—C16—H16A 120.8
N1—C4—C5 123.2 (4) C18—C17—C16 119.3 (4)
N1—C4—H4A 118.4 C18—C17—H17A 120.3
C5—C4—H4A 118.4 C16—C17—H17A 120.3
C6—C5—C4 118.4 (4) N3—C18—C17 123.3 (4)
C6—C5—H5A 120.8 N3—C18—H18A 118.4
C4—C5—H5A 120.8 C17—C18—H18A 118.4
C5—C6—C7 120.4 (4) C8—N1—C4 117.1 (4)
C5—C6—H6A 119.8 C8—N1—Re1 122.6 (3)
C7—C6—H6A 119.8 C4—N1—Re1 120.1 (3)
C8—C7—C6 118.1 (4) C9—N2—C13 117.2 (4)
C8—C7—H7A 121.0 C9—N2—Re1 124.4 (3)
C6—C7—H7A 121.0 C13—N2—Re1 118.3 (3)
N1—C8—C7 122.8 (4) C14—N3—C18 116.8 (4)
N1—C8—H8A 118.6 C14—N3—Re1 123.9 (3)
C7—C8—H8A 118.6 C18—N3—Re1 119.4 (3)
N2—C9—C10 123.2 (4) F4—B1—F1 112.0 (6)
N2—C9—H9A 118.4 F4—B1—F2 111.4 (6)
C10—C9—H9A 118.4 F1—B1—F2 109.1 (7)
C11—C10—C9 119.5 (4) F4—B1—F3 110.4 (7)
C11—C10—H10A 120.3 F1—B1—F3 106.5 (6)
C9—C10—H10A 120.3 F2—B1—F3 107.2 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C4–C8 pyrdine ring.

D—H···A D—H H···A D···A D—H···A
C4—H4A···F3i 0.95 2.31 3.240 (7) 165
C13—H13A···F4ii 0.95 2.31 3.219 (12) 160
C17—H17A···F3iii 0.95 2.32 3.123 (7) 142
C10—H10A···Cg1iv 0.95 2.61 3.302 (5) 130

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) x+1, −y+3/2, z+1/2; (iv) x, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5093).

References

  1. Al Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o453. [DOI] [PMC free article] [PubMed]
  2. Amoroso, A. J., Arthur, R. J., Coogan, M. P., Court, J. B., Fernández-Moreira, V., Hayes, A. J., Lloyd, D., Millet, C. & Pope, S. J. A. (2008). New J. Chem. 32, 1097–1102.
  3. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  4. Bruker (2004). APEX2, FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Coogan, M. P., Fernández-Moreira, V., Kariuki, B. M., Pope, S. J. A. & Thorp-Greenwood, F. L. (2009). Angew. Chem. Int. Ed. Engl. 48, 4965–4968. [DOI] [PubMed]
  6. Franklin, B. R., Herrick, R. S., Ziegler, C. J., Cetin, A., Barone, N. & Condon, L. R. (2008). Inorg. Chem. 47, 5902–5909. [DOI] [PubMed]
  7. Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015006180/su5093sup1.cif

e-71-0m106-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006180/su5093Isup2.hkl

e-71-0m106-Isup2.hkl (141.9KB, hkl)

. DOI: 10.1107/S2056989015006180/su5093fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015006180/su5093fig2.tif

Preparation of the title compound.

CCDC reference: 1022851

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES