Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):564–566. doi: 10.1107/S2056989015008105

Crystal structure of [2-(tri­ethyl­ammonio)­eth­yl][(2,4,6-triiso­propyl­phen­yl)sulfon­yl]amide tetra­hydrate

C Golz a, C Strohmann a,*
PMCID: PMC4420053  PMID: 25995881

The zwitterionic title compound shows a major disorder of the triiso­propyl­phenyl group over two equally occupied locations. An inter­esting feature is the uncommon hydrate structure, exhibiting a tape-like motif which can be classified as a transition of the one-dimensional T4(2)6(2) motif into the two-dimensional L4(6)5(7)6(8) motif.

Keywords: crystal structure, zwitterion, hydrate, tape-like motif, hydrogen bonding

Abstract

The zwitterionic title compound, C23H42N2O2S·4H2O, crystallized as a tetrahydrate from a solution of N-[(2,4,6-triiso­propyl­phen­yl)sulfon­yl]aziridine in tri­ethyl­amine, diethyl ether and pentane in the presence of moist air. It is formed by a nucleophillic ring-opening that is assumed to be reversible. The mol­ecular structure shows a major disorder of the triiso­propyl­phenyl group over two equally occupied locations. An inter­esting feature is the uncommon hydrate structure, exhibiting a tape-like motif which can be classified as a transition of the one-dimensional T4(2)6(2) motif into the two-dimensional L4(6)5(7)6(8) motif.

Chemical context  

The title compound was isolated as by-product while purifying the corresponding sulfonyl­aziridine via column chromatography using a solvent mixture containing tri­ethyl­amine. Inter­estingly, the zwitterionic title compound was formed by the nucleophilic ring-opening of the aziridine. This is so far undocumented for tertiary amines but well known for primary or secondary amines (Hu, 2003). We assume that this ring-opening reaction is reversible, since the aziridine was isolated in the absence of water. Possibly, the zwitterionic structure is stabilized by the water mol­ecules and/or by crystallization, preventing the reverse reaction. Furthermore, the four incorporated solvent water mol­ecules in the crystal structure form a tape-like hydrate structure comparable to some known hydrogen-bonding motifs (Infantes et al., 2003). This is discussed further in the Supra­molecular features section.graphic file with name e-71-00564-scheme1.jpg

Structural commentary  

The asymmetric unit consists of a [2-(tri­ethyl­ammonio)­eth­yl][(2,4,6-triiso­propyl­phen­yl)sulfon­yl]amide and four water mol­ecules (Fig. 1). The triiso­propyl­phenyl substituent is disordered over two slightly tilted locations with almost equal occupancies. No superlattice could be found and statistical disorder was assumed. Furthermore, the benzene ring appears to be bent towards the sulfur, which was also observed in the corresponding aziridine compound; for the structure of rac-2-phenyl-1-[(2,4,6-triiso­propyl­benzene)­sulfon­yl]aziridine, see Golz et al. (2014) and for isopropyl 2,4,6-triiso­propyl­phenyl sulfone see Sandrock et al. (2004). This seems to be typical of the triisoproyl­phenyl­sulfonyl group, though that will not be discussed further due to the disorder. The C2—N2 bond involving the cationic N atom is long [1.521 (2) Å], significantly exceeding the sum of the van der Waals radii (1.47 Å), while the C1—N1 bond [1.475 (2) Å], involving the anionic N atom, is close to the sum of the van der Waals radii. In contrast, the S—N1 bond [1.571 (1) Å] is shortened significantly, with the sum of the van der Waals radii being 1.73 Å. Both nitro­gen groups are in an almost perfect anti­periplanar conformation [N1—C1—C2—N2 = 179.7 (1)°].

Figure 1.

Figure 1

The mol­ecular structure and atom numbering for the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms of the minor disorder component are drawn with grey-coloured C atoms.

Supra­molecular features  

Inter­molecular inter­actions occur mostly through hydrogen bonding of the water mol­ecules among themselves and with the zwitterionic compound (Table 1). Three of the four water mol­ecules form an infinite tape of inter­connected four- and six-membered rings known as the T4(2)6(2) motif. Each ring contains a centre of symmetry and the tape expands in the [100] direction. Inter­estingly, the border of the tape is lined with the zwitterionic compound and one additional water mol­ecule, thus expanding the tape with five- and six-membered rings involving the O4–O6–O3–O5–N1 and O4–O3–O5–O2–S1–N1 atoms, respectively (Fig. 2 and Fig. 3). The structure is comparable to the L4(6)5(7)6(8) motif, building up two-dimensional sheets, which are limited here by the zwitterionic amide. In summary, the hydrate structure discussed herein represents a transition between a one-dimensional tape and a two-dimensional sheet.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O4H4DO3 0.83(2) 2.04(2) 2.867(2) 171(2)
O3H3CO5 0.90(2) 1.83(2) 2.725(2) 174(2)
O3H3DO6i 0.85(3) 2.08(3) 2.912(2) 169(2)
O5H5CO2ii 0.83(3) 2.09(3) 2.901(2) 165(2)
O6H6DO4 0.86(2) 1.95(2) 2.787(2) 167(2)
O6H6EO3iii 0.82(3) 2.03(3) 2.845(2) 170(2)
O5H5DN1 0.84(3) 2.05(3) 2.881(2) 170(2)
O4H4EN1ii 0.92(3) 2.06(3) 2.959(2) 165(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A view of the hydrate structure expanding along (100). H atoms not involved in hydrogen bonds and the isopropyl groups have been omitted for clarity. [Symmetry codes: (i) x − 1, y, z; (ii) x − 2, y, z; (iii) x − 1, y − 2, z − 1; (iv) x − 2, y − 2, z − 1; (v) x − 3, y − 2, z − 1.]

Figure 3.

Figure 3

Hydrate-structure motifs already known (left and right) (Infantes et al., 2003) and the structure reported here (centre).

Some recent structures involving water forming the T4(2)6(2) hydrogen-bonding motif have been published (Li, Li, Su et al., 2006; Li, Chen et al., 2006; Song et al., 2007; Kostakis et al., 2009). There are only a few examples of two-dimensional hydrogen-bond networks known, but among these the L4(6)5(7)6(8) motif is the most common. For recent examples, see Born et al. (1995) and Gómez-Saiz et al. (2002).

Database survey  

Comparable zwitterionic structures with neighbouring amide and ammonium groups are quite uncommon. Only one related structure was found in the Cambridge Structural database (Version 5.35, November 2013; Groom & Allen 2014). In the mol­ecule reported here, the N1—C1 bond length [1.475 (2) Å] involving the anionic N atom is normal [sum of van der Waals radii = 1.479 (2) Å], while the C2—N2 bond to the cationic N atom [1.521 (2) Å] is unusually long. This contrasts sharply with the structure of zwitterionic 1-amino-2-nitramino­ethane (Vasiliev et al., 2001), where these observations are reversed, with the C—N bond to the anionic N atom reduced to 1.455 (2) Å.

Synthesis and crystallization  

N-[(2,4,6-Triiso­propyl­phen­yl)sulfon­yl]aziridine was synthesized from ethano­lamine as described in the recent literature (Buckley et al., 2013). Crystals of the title compound were obtained after a test tube containing small amounts of the sulfonyl­aziridine dissolved in a mixture of diethyl ether, pentane and tri­ethyl­amine was left to evaporate over a period of 3 d.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms not involved in hydrogen bonds were positioned geometrically and refined using a riding model, with U iso(H) = 1.5U eq(C) for terminal and 1.2U eq(C) for non-terminal H atoms, with C—H = 0.98 Å. H atoms involved in hydrogen bonds were located in a difference Fourier synthesis map and were freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C23H42N2O2S4H2O
M r 482.71
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c () 6.6797(4), 8.7345(5), 23.3973(14)
, , () 96.579(5), 93.734(5), 95.570(5)
V (3) 1345.69(14)
Z 2
Radiation type Mo K
(mm1) 0.16
Crystal size (mm) 0.34 0.25 0.08
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2013)
T min, T max 0.981, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 34730, 5881, 4239
R int 0.075
(sin /)max (1) 0.639
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.049, 0.102, 1.01
No. of reflections 5881
No. of parameters 472
No. of restraints 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

The disorder of the triiso­propyl­phenyl group was refined by a free variable to an occupancy ratio of 0.502 (2):0.498 (2). To ensure the stability of the phenyl ring in the refinement, the standard FLAT restraint was applied to atoms C11–C19 and a DELU restraint to atoms C11, C12 and C16, in both of the disorder domains. In addition, atoms C11, C11′ and C16′ required an additional ISOR restraint with a reduced deviation (s = 0.001 and st = 0.002).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008105/sj5448sup1.cif

e-71-00564-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008105/sj5448Isup2.hkl

e-71-00564-Isup2.hkl (322.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008105/sj5448Isup3.cml

CCDC reference: 1061352

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (VCI) for financial support.

supplementary crystallographic information

Crystal data

C23H42N2O2S·4H2O Z = 2
Mr = 482.71 F(000) = 532
Triclinic, P1 Dx = 1.191 Mg m3
a = 6.6797 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.7345 (5) Å Cell parameters from 5123 reflections
c = 23.3973 (14) Å θ = 2.6–28.2°
α = 96.579 (5)° µ = 0.16 mm1
β = 93.734 (5)° T = 173 K
γ = 95.570 (5)° Plate, clear colourless
V = 1345.69 (14) Å3 0.34 × 0.25 × 0.08 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 5881 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4239 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
Detector resolution: 16.0560 pixels mm-1 θmax = 27.0°, θmin = 2.4°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013) k = −11→11
Tmin = 0.981, Tmax = 1.000 l = −29→29
34730 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.1372P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
5881 reflections Δρmax = 0.24 e Å3
472 parameters Δρmin = −0.33 e Å3
36 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.46930 (6) 0.84811 (5) 0.73798 (2) 0.01893 (12)
O1 0.32141 (17) 0.72141 (14) 0.71224 (5) 0.0225 (3)
O2 0.39889 (18) 1.00090 (14) 0.73798 (6) 0.0295 (3)
O3 1.1266 (2) 1.00237 (18) 0.57740 (7) 0.0300 (3)
O4 1.5372 (2) 0.93656 (17) 0.59417 (7) 0.0322 (4)
O5 1.0118 (2) 1.06162 (16) 0.68669 (6) 0.0262 (3)
O6 1.7836 (2) 0.81480 (17) 0.51262 (7) 0.0312 (4)
N1 0.6732 (2) 0.85102 (16) 0.70803 (6) 0.0186 (3)
C1 0.7592 (3) 0.70129 (19) 0.70154 (7) 0.0186 (4)
H1A 0.7122 0.6373 0.7313 0.022*
H1B 0.9083 0.7186 0.7062 0.022*
N2 0.7612 (2) 0.46079 (15) 0.62443 (6) 0.0155 (3)
C2 0.6901 (2) 0.61873 (18) 0.64150 (7) 0.0164 (4)
H2A 0.5408 0.6063 0.6379 0.020*
H2B 0.7347 0.6877 0.6130 0.020*
C3 0.6882 (3) 0.3436 (2) 0.66417 (8) 0.0216 (4)
H3A 0.7416 0.2440 0.6522 0.026*
H3B 0.7462 0.3807 0.7039 0.026*
C4 0.4624 (3) 0.3141 (2) 0.66513 (9) 0.0320 (5)
H4A 0.4073 0.4116 0.6774 0.048*
H4B 0.4298 0.2395 0.6922 0.048*
H4C 0.4032 0.2722 0.6264 0.048*
C5 0.9904 (2) 0.4708 (2) 0.62907 (8) 0.0213 (4)
H5A 1.0404 0.5092 0.6694 0.026*
H5B 1.0311 0.3652 0.6203 0.026*
C6 1.0912 (3) 0.5746 (2) 0.58966 (8) 0.0291 (5)
H6A 1.0489 0.5345 0.5494 0.044*
H6B 1.2380 0.5770 0.5960 0.044*
H6C 1.0522 0.6798 0.5980 0.044*
C7 0.6761 (3) 0.4100 (2) 0.56254 (7) 0.0198 (4)
H7A 0.5270 0.4016 0.5615 0.024*
H7B 0.7194 0.4918 0.5386 0.024*
C8 0.7380 (3) 0.2575 (2) 0.53547 (8) 0.0281 (5)
H8A 0.8850 0.2656 0.5344 0.042*
H8B 0.6745 0.2333 0.4961 0.042*
H8C 0.6946 0.1750 0.5584 0.042*
C11 0.5230 (8) 0.8325 (6) 0.8086 (2) 0.0128 (14) 0.5020 (15)
C12 0.6299 (5) 0.9594 (4) 0.84523 (15) 0.0160 (7) 0.5020 (15)
C13 0.6466 (5) 0.9557 (4) 0.90455 (14) 0.0179 (8) 0.5020 (15)
H13 0.7179 1.0416 0.9285 0.021* 0.5020 (15)
C14 0.5630 (5) 0.8313 (4) 0.93024 (14) 0.0171 (8) 0.5020 (15)
C15 0.4656 (9) 0.7066 (5) 0.8933 (3) 0.0181 (11) 0.5020 (15)
H15 0.4075 0.6203 0.9100 0.022* 0.5020 (15)
C16 0.4474 (9) 0.6995 (8) 0.8334 (3) 0.0168 (12) 0.5020 (15)
C17 0.7393 (5) 1.1005 (4) 0.82250 (15) 0.0172 (8) 0.5020 (15)
H17 0.7186 1.0852 0.7794 0.021* 0.5020 (15)
C18 0.3527 (5) 0.5456 (4) 0.80066 (16) 0.0203 (8) 0.5020 (15)
H18 0.3777 0.5485 0.7591 0.024* 0.5020 (15)
C19 0.5849 (5) 0.8221 (4) 0.99530 (15) 0.0218 (8) 0.5020 (15)
H19 0.4485 0.7879 1.0074 0.026* 0.5020 (15)
C20 0.9656 (5) 1.1076 (5) 0.83905 (17) 0.0293 (10) 0.5020 (15)
H20A 0.9905 1.1284 0.8811 0.044* 0.5020 (15)
H20B 1.0375 1.1906 0.8211 0.044* 0.5020 (15)
H20C 1.0139 1.0083 0.8255 0.044* 0.5020 (15)
C21 0.6519 (6) 1.2506 (4) 0.84431 (19) 0.0331 (10) 0.5020 (15)
H21A 0.5071 1.2408 0.8328 0.050* 0.5020 (15)
H21B 0.7197 1.3375 0.8276 0.050* 0.5020 (15)
H21C 0.6731 1.2693 0.8865 0.050* 0.5020 (15)
C22 0.1266 (10) 0.5259 (6) 0.8042 (3) 0.0256 (14) 0.5020 (15)
H22A 0.0962 0.5164 0.8441 0.038* 0.5020 (15)
H22B 0.0684 0.4322 0.7792 0.038* 0.5020 (15)
H22C 0.0686 0.6163 0.7914 0.038* 0.5020 (15)
C23 0.4510 (6) 0.4075 (4) 0.82033 (17) 0.0281 (9) 0.5020 (15)
H23A 0.5970 0.4234 0.8172 0.042* 0.5020 (15)
H23B 0.3947 0.3125 0.7958 0.042* 0.5020 (15)
H23C 0.4243 0.3980 0.8605 0.042* 0.5020 (15)
C24 0.6614 (6) 0.9742 (4) 1.03185 (16) 0.0297 (9) 0.5020 (15)
H24A 0.6546 0.9616 1.0728 0.045* 0.5020 (15)
H24B 0.5775 1.0549 1.0221 0.045* 0.5020 (15)
H24C 0.8015 1.0042 1.0243 0.045* 0.5020 (15)
C25 0.7232 (11) 0.6981 (7) 1.0074 (3) 0.0307 (14) 0.5020 (15)
H25A 0.8594 0.7299 0.9969 0.046* 0.5020 (15)
H25B 0.6711 0.5996 0.9845 0.046* 0.5020 (15)
H25C 0.7278 0.6854 1.0485 0.046* 0.5020 (15)
C11' 0.5178 (9) 0.8031 (6) 0.8164 (2) 0.0110 (13) 0.4980 (15)
C16' 0.3975 (9) 0.6931 (8) 0.8416 (3) 0.0122 (15) 0.4980 (15)
C12' 0.7007 (5) 0.8740 (4) 0.84657 (14) 0.0149 (7) 0.4980 (15)
C13' 0.7689 (5) 0.8181 (4) 0.89710 (15) 0.0175 (8) 0.4980 (15)
H13' 0.8919 0.8650 0.9171 0.021* 0.4980 (15)
C14' 0.6617 (5) 0.6952 (4) 0.91930 (14) 0.0165 (8) 0.4980 (15)
C15' 0.4741 (8) 0.6404 (5) 0.8922 (2) 0.0129 (10) 0.4980 (15)
H15' 0.3936 0.5636 0.9086 0.015* 0.4980 (15)
C17' 0.8201 (5) 1.0221 (4) 0.83205 (14) 0.0149 (7) 0.4980 (15)
H17' 0.7618 1.0467 0.7941 0.018* 0.4980 (15)
C18' 0.1755 (5) 0.6347 (5) 0.82125 (16) 0.0201 (8) 0.4980 (15)
H18' 0.1335 0.6925 0.7887 0.024* 0.4980 (15)
C19' 0.7393 (6) 0.6336 (5) 0.97372 (18) 0.0202 (8) 0.4980 (15)
H19' 0.6572 0.5330 0.9764 0.024* 0.4980 (15)
C20' 1.0444 (5) 1.0021 (4) 0.82672 (18) 0.0213 (8) 0.4980 (15)
H20D 1.1134 1.0970 0.8155 0.032* 0.4980 (15)
H20E 1.0571 0.9148 0.7974 0.032* 0.4980 (15)
H20F 1.1056 0.9817 0.8639 0.032* 0.4980 (15)
C21' 0.7914 (6) 1.1560 (4) 0.87833 (16) 0.0231 (8) 0.4980 (15)
H21D 0.8426 1.1322 0.9162 0.035* 0.4980 (15)
H21E 0.6476 1.1696 0.8790 0.035* 0.4980 (15)
H21F 0.8657 1.2516 0.8694 0.035* 0.4980 (15)
C22' 0.0387 (5) 0.6696 (5) 0.87050 (16) 0.0266 (9) 0.4980 (15)
H22D −0.1029 0.6520 0.8552 0.040* 0.4980 (15)
H22E 0.0701 0.7778 0.8875 0.040* 0.4980 (15)
H22F 0.0618 0.6011 0.9001 0.040* 0.4980 (15)
C23' 0.1484 (11) 0.4617 (6) 0.7993 (3) 0.0250 (13) 0.4980 (15)
H23D 0.1894 0.4026 0.8305 0.037* 0.4980 (15)
H23E 0.2321 0.4417 0.7669 0.037* 0.4980 (15)
H23F 0.0064 0.4298 0.7864 0.037* 0.4980 (15)
C24' 0.7064 (13) 0.7460 (9) 1.0273 (3) 0.0349 (15) 0.4980 (15)
H24D 0.7516 0.7031 1.0622 0.052* 0.4980 (15)
H24E 0.5627 0.7599 1.0280 0.052* 0.4980 (15)
H24F 0.7840 0.8463 1.0257 0.052* 0.4980 (15)
C25' 0.9588 (6) 0.6021 (5) 0.97315 (18) 0.0364 (11) 0.4980 (15)
H25D 0.9743 0.5244 0.9405 0.055* 0.4980 (15)
H25E 1.0009 0.5633 1.0092 0.055* 0.4980 (15)
H25F 1.0428 0.6982 0.9694 0.055* 0.4980 (15)
H4D 1.414 (3) 0.946 (2) 0.5910 (9) 0.036 (7)*
H3C 1.081 (3) 1.025 (3) 0.6124 (11) 0.048 (7)*
H3D 1.036 (4) 0.937 (3) 0.5591 (12) 0.065 (9)*
H5C 1.110 (4) 1.033 (3) 0.7046 (10) 0.049 (8)*
H6D 1.695 (4) 0.853 (3) 0.5332 (10) 0.048 (7)*
H6E 1.794 (4) 0.866 (3) 0.4853 (11) 0.056 (9)*
H5D 0.909 (4) 1.010 (3) 0.6956 (11) 0.065 (9)*
H4E 1.565 (4) 0.923 (3) 0.6322 (14) 0.094 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0136 (2) 0.0180 (2) 0.0234 (2) 0.00158 (17) −0.00203 (18) −0.00337 (18)
O1 0.0173 (6) 0.0259 (7) 0.0210 (7) −0.0049 (5) −0.0018 (5) −0.0027 (5)
O2 0.0202 (7) 0.0226 (7) 0.0441 (9) 0.0081 (6) −0.0053 (6) −0.0041 (6)
O3 0.0257 (8) 0.0411 (9) 0.0229 (8) 0.0026 (7) 0.0028 (7) 0.0030 (7)
O4 0.0290 (9) 0.0445 (9) 0.0259 (8) 0.0138 (7) 0.0042 (7) 0.0067 (7)
O5 0.0211 (7) 0.0311 (8) 0.0278 (8) 0.0013 (6) 0.0031 (6) 0.0106 (6)
O6 0.0274 (8) 0.0390 (9) 0.0310 (9) 0.0115 (7) 0.0086 (7) 0.0103 (7)
N1 0.0162 (7) 0.0162 (7) 0.0225 (8) 0.0018 (6) 0.0007 (6) −0.0012 (6)
C1 0.0165 (9) 0.0195 (9) 0.0196 (9) 0.0031 (7) 0.0001 (7) 0.0010 (7)
N2 0.0138 (7) 0.0157 (7) 0.0168 (8) 0.0030 (6) 0.0000 (6) 0.0008 (6)
C2 0.0167 (9) 0.0151 (9) 0.0180 (9) 0.0040 (7) 0.0014 (7) 0.0024 (7)
C3 0.0273 (10) 0.0165 (9) 0.0223 (10) 0.0042 (8) 0.0034 (8) 0.0050 (7)
C4 0.0281 (11) 0.0324 (11) 0.0382 (12) 0.0005 (9) 0.0113 (9) 0.0125 (9)
C5 0.0133 (9) 0.0240 (10) 0.0257 (10) 0.0055 (7) −0.0027 (8) −0.0011 (8)
C6 0.0157 (9) 0.0426 (12) 0.0270 (11) −0.0029 (9) −0.0011 (8) 0.0025 (9)
C7 0.0153 (9) 0.0247 (10) 0.0173 (9) −0.0005 (7) −0.0009 (7) −0.0028 (7)
C8 0.0256 (10) 0.0279 (10) 0.0281 (11) 0.0022 (8) 0.0035 (9) −0.0080 (9)
C11 0.0123 (16) 0.0136 (16) 0.0127 (16) 0.0009 (9) 0.0033 (9) 0.0017 (9)
C12 0.0134 (17) 0.0168 (19) 0.0178 (19) 0.0013 (15) 0.0003 (14) 0.0027 (15)
C13 0.0161 (17) 0.0200 (18) 0.0156 (18) 0.0007 (14) −0.0019 (14) −0.0033 (14)
C14 0.0153 (17) 0.0248 (19) 0.0129 (17) 0.0077 (14) 0.0028 (14) 0.0037 (15)
C15 0.020 (2) 0.011 (2) 0.025 (2) 0.000 (2) 0.0075 (17) 0.008 (3)
C16 0.013 (3) 0.020 (3) 0.018 (3) 0.003 (2) 0.002 (2) −0.0006 (19)
C17 0.0174 (19) 0.0157 (19) 0.0170 (19) −0.0038 (15) 0.0005 (15) 0.0003 (15)
C18 0.0231 (19) 0.0165 (18) 0.0203 (19) −0.0058 (15) −0.0003 (15) 0.0057 (15)
C19 0.0206 (19) 0.030 (2) 0.0155 (18) 0.0016 (16) 0.0041 (15) 0.0043 (16)
C20 0.019 (2) 0.038 (2) 0.031 (2) −0.0049 (19) −0.0003 (17) 0.0127 (19)
C21 0.036 (2) 0.019 (2) 0.046 (3) 0.0010 (17) 0.013 (2) 0.0055 (18)
C22 0.023 (3) 0.018 (4) 0.035 (3) −0.003 (3) −0.009 (2) 0.009 (3)
C23 0.038 (2) 0.0172 (19) 0.028 (2) 0.0010 (17) 0.0011 (18) 0.0013 (16)
C24 0.039 (2) 0.035 (2) 0.0153 (19) 0.0106 (19) −0.0028 (17) −0.0014 (17)
C25 0.045 (3) 0.026 (4) 0.022 (4) 0.008 (3) −0.006 (3) 0.008 (3)
C11' 0.0113 (15) 0.0120 (16) 0.0097 (15) 0.0002 (9) 0.0018 (9) 0.0016 (9)
C16' 0.0128 (18) 0.0110 (16) 0.0132 (17) 0.0016 (10) 0.0013 (10) 0.0022 (9)
C12' 0.0190 (18) 0.0113 (18) 0.0152 (18) 0.0029 (15) 0.0066 (14) 0.0008 (14)
C13' 0.0144 (17) 0.0195 (18) 0.0176 (18) −0.0010 (14) −0.0005 (14) 0.0013 (14)
C14' 0.0174 (18) 0.0186 (18) 0.0136 (17) 0.0035 (14) 0.0013 (14) 0.0007 (14)
C15' 0.013 (2) 0.011 (2) 0.014 (2) −0.003 (2) 0.0009 (15) 0.005 (2)
C17' 0.0159 (18) 0.0177 (19) 0.0104 (17) −0.0023 (16) −0.0014 (14) 0.0040 (15)
C18' 0.0189 (19) 0.023 (2) 0.0183 (19) −0.0041 (16) 0.0020 (15) 0.0064 (17)
C19' 0.023 (2) 0.021 (2) 0.017 (2) 0.0015 (16) −0.0015 (17) 0.0060 (17)
C20' 0.0162 (18) 0.023 (2) 0.024 (2) −0.0024 (16) 0.0063 (16) 0.0035 (16)
C21' 0.026 (2) 0.0180 (18) 0.025 (2) −0.0012 (15) 0.0074 (16) 0.0033 (16)
C22' 0.0156 (18) 0.037 (2) 0.028 (2) 0.0002 (16) 0.0021 (16) 0.0072 (18)
C23' 0.026 (3) 0.022 (3) 0.026 (3) −0.004 (3) 0.0007 (19) 0.002 (3)
C24' 0.045 (3) 0.049 (5) 0.014 (3) 0.016 (3) 0.006 (3) 0.005 (3)
C25' 0.034 (2) 0.054 (3) 0.027 (2) 0.022 (2) 0.0028 (19) 0.018 (2)

Geometric parameters (Å, º)

S1—O1 1.4563 (12) C19—C24 1.520 (5)
S1—O2 1.4574 (13) C19—C25 1.529 (7)
S1—N1 1.5708 (14) C20—H20A 0.9800
S1—C11 1.692 (6) C20—H20B 0.9800
S1—C11' 1.934 (6) C20—H20C 0.9800
O3—H3C 0.90 (2) C21—H21A 0.9800
O3—H3D 0.85 (3) C21—H21B 0.9800
O4—H4D 0.83 (2) C21—H21C 0.9800
O4—H4E 0.92 (3) C22—H22A 0.9800
O5—H5C 0.83 (3) C22—H22B 0.9800
O5—H5D 0.84 (3) C22—H22C 0.9800
O6—H6D 0.86 (2) C23—H23A 0.9800
O6—H6E 0.82 (3) C23—H23B 0.9800
N1—C1 1.475 (2) C23—H23C 0.9800
C1—H1A 0.9900 C24—H24A 0.9800
C1—H1B 0.9900 C24—H24B 0.9800
C1—C2 1.525 (2) C24—H24C 0.9800
N2—C2 1.521 (2) C25—H25A 0.9800
N2—C3 1.527 (2) C25—H25B 0.9800
N2—C5 1.521 (2) C25—H25C 0.9800
N2—C7 1.521 (2) C11'—C16' 1.399 (8)
C2—H2A 0.9900 C11'—C12' 1.419 (7)
C2—H2B 0.9900 C16'—C15' 1.403 (9)
C3—H3A 0.9900 C16'—C18' 1.546 (7)
C3—H3B 0.9900 C12'—C13' 1.396 (5)
C3—C4 1.508 (2) C12'—C17' 1.536 (5)
C4—H4A 0.9800 C13'—H13' 0.9500
C4—H4B 0.9800 C13'—C14' 1.401 (5)
C4—H4C 0.9800 C14'—C15' 1.383 (7)
C5—H5A 0.9900 C14'—C19' 1.518 (5)
C5—H5B 0.9900 C15'—H15' 0.9500
C5—C6 1.510 (3) C17'—H17' 1.0000
C6—H6A 0.9800 C17'—C20' 1.536 (5)
C6—H6B 0.9800 C17'—C21' 1.535 (5)
C6—H6C 0.9800 C18'—H18' 1.0000
C7—H7A 0.9900 C18'—C22' 1.538 (5)
C7—H7B 0.9900 C18'—C23' 1.529 (5)
C7—C8 1.514 (2) C19'—H19' 1.0000
C8—H8A 0.9800 C19'—C24' 1.542 (6)
C8—H8B 0.9800 C19'—C25' 1.518 (5)
C8—H8C 0.9800 C20'—H20D 0.9800
C11—C12 1.422 (6) C20'—H20E 0.9800
C11—C16 1.420 (8) C20'—H20F 0.9800
C12—C13 1.390 (5) C21'—H21D 0.9800
C12—C17 1.537 (5) C21'—H21E 0.9800
C13—H13 0.9500 C21'—H21F 0.9800
C13—C14 1.389 (5) C22'—H22D 0.9800
C14—C15 1.390 (6) C22'—H22E 0.9800
C14—C19 1.532 (5) C22'—H22F 0.9800
C15—H15 0.9500 C23'—H23D 0.9800
C15—C16 1.392 (9) C23'—H23E 0.9800
C16—C18 1.526 (7) C23'—H23F 0.9800
C17—H17 1.0000 C24'—H24D 0.9800
C17—C20 1.529 (5) C24'—H24E 0.9800
C17—C21 1.534 (5) C24'—H24F 0.9800
C18—H18 1.0000 C25'—H25D 0.9800
C18—C22 1.512 (7) C25'—H25E 0.9800
C18—C23 1.530 (5) C25'—H25F 0.9800
C19—H19 1.0000
O1—S1—O2 113.94 (7) C17—C20—H20C 109.5
O1—S1—N1 112.66 (7) H20A—C20—H20B 109.5
O1—S1—C11 110.2 (2) H20A—C20—H20C 109.5
O1—S1—C11' 103.48 (18) H20B—C20—H20C 109.5
O2—S1—N1 107.70 (8) C17—C21—H21A 109.5
O2—S1—C11 104.22 (18) C17—C21—H21B 109.5
O2—S1—C11' 109.94 (16) C17—C21—H21C 109.5
N1—S1—C11 107.6 (2) H21A—C21—H21B 109.5
N1—S1—C11' 108.99 (18) H21A—C21—H21C 109.5
H3C—O3—H3D 105 (2) H21B—C21—H21C 109.5
H4D—O4—H4E 105 (2) C18—C22—H22A 109.5
H5C—O5—H5D 107 (2) C18—C22—H22B 109.5
H6D—O6—H6E 107 (2) C18—C22—H22C 109.5
C1—N1—S1 114.54 (11) H22A—C22—H22B 109.5
N1—C1—H1A 110.1 H22A—C22—H22C 109.5
N1—C1—H1B 110.1 H22B—C22—H22C 109.5
N1—C1—C2 108.09 (14) C18—C23—H23A 109.5
H1A—C1—H1B 108.4 C18—C23—H23B 109.5
C2—C1—H1A 110.1 C18—C23—H23C 109.5
C2—C1—H1B 110.1 H23A—C23—H23B 109.5
C2—N2—C3 111.46 (12) H23A—C23—H23C 109.5
C2—N2—C7 106.21 (12) H23B—C23—H23C 109.5
C5—N2—C2 110.78 (13) C19—C24—H24A 109.5
C5—N2—C3 106.66 (13) C19—C24—H24B 109.5
C5—N2—C7 110.95 (12) C19—C24—H24C 109.5
C7—N2—C3 110.85 (13) H24A—C24—H24B 109.5
C1—C2—H2A 107.8 H24A—C24—H24C 109.5
C1—C2—H2B 107.8 H24B—C24—H24C 109.5
N2—C2—C1 117.89 (14) C19—C25—H25A 109.5
N2—C2—H2A 107.8 C19—C25—H25B 109.5
N2—C2—H2B 107.8 C19—C25—H25C 109.5
H2A—C2—H2B 107.2 H25A—C25—H25B 109.5
N2—C3—H3A 108.5 H25A—C25—H25C 109.5
N2—C3—H3B 108.5 H25B—C25—H25C 109.5
H3A—C3—H3B 107.5 C16'—C11'—S1 123.9 (5)
C4—C3—N2 115.21 (15) C16'—C11'—C12' 119.4 (5)
C4—C3—H3A 108.5 C12'—C11'—S1 116.3 (4)
C4—C3—H3B 108.5 C11'—C16'—C15' 118.7 (6)
C3—C4—H4A 109.5 C11'—C16'—C18' 124.9 (6)
C3—C4—H4B 109.5 C15'—C16'—C18' 116.1 (5)
C3—C4—H4C 109.5 C11'—C12'—C17' 124.8 (4)
H4A—C4—H4B 109.5 C13'—C12'—C11' 118.9 (4)
H4A—C4—H4C 109.5 C13'—C12'—C17' 115.8 (3)
H4B—C4—H4C 109.5 C12'—C13'—H13' 118.9
N2—C5—H5A 108.6 C12'—C13'—C14' 122.1 (3)
N2—C5—H5B 108.6 C14'—C13'—H13' 118.9
H5A—C5—H5B 107.6 C13'—C14'—C19' 121.6 (3)
C6—C5—N2 114.60 (14) C15'—C14'—C13' 117.1 (3)
C6—C5—H5A 108.6 C15'—C14'—C19' 121.1 (3)
C6—C5—H5B 108.6 C16'—C15'—H15' 118.5
C5—C6—H6A 109.5 C14'—C15'—C16' 122.9 (5)
C5—C6—H6B 109.5 C14'—C15'—H15' 118.5
C5—C6—H6C 109.5 C12'—C17'—H17' 108.2
H6A—C6—H6B 109.5 C12'—C17'—C20' 112.1 (3)
H6A—C6—H6C 109.5 C20'—C17'—H17' 108.2
H6B—C6—H6C 109.5 C21'—C17'—C12' 108.5 (3)
N2—C7—H7A 108.5 C21'—C17'—H17' 108.2
N2—C7—H7B 108.5 C21'—C17'—C20' 111.6 (3)
H7A—C7—H7B 107.5 C16'—C18'—H18' 108.1
C8—C7—N2 115.17 (15) C22'—C18'—C16' 110.1 (4)
C8—C7—H7A 108.5 C22'—C18'—H18' 108.1
C8—C7—H7B 108.5 C23'—C18'—C16' 112.1 (5)
C7—C8—H8A 109.5 C23'—C18'—H18' 108.1
C7—C8—H8B 109.5 C23'—C18'—C22' 110.3 (4)
C7—C8—H8C 109.5 C14'—C19'—H19' 107.6
H8A—C8—H8B 109.5 C14'—C19'—C24' 110.1 (4)
H8A—C8—H8C 109.5 C14'—C19'—C25' 113.0 (3)
H8B—C8—H8C 109.5 C24'—C19'—H19' 107.6
C12—C11—S1 119.8 (4) C25'—C19'—H19' 107.6
C16—C11—S1 121.0 (4) C25'—C19'—C24' 110.8 (5)
C16—C11—C12 118.9 (5) C17'—C20'—H20D 109.5
C11—C12—C17 123.3 (4) C17'—C20'—H20E 109.5
C13—C12—C11 119.7 (4) C17'—C20'—H20F 109.5
C13—C12—C17 116.9 (3) H20D—C20'—H20E 109.5
C12—C13—H13 118.7 H20D—C20'—H20F 109.5
C14—C13—C12 122.5 (3) H20E—C20'—H20F 109.5
C14—C13—H13 118.7 C17'—C21'—H21D 109.5
C13—C14—C15 116.5 (4) C17'—C21'—H21E 109.5
C13—C14—C19 123.6 (3) C17'—C21'—H21F 109.5
C15—C14—C19 119.8 (4) H21D—C21'—H21E 109.5
C14—C15—H15 117.8 H21D—C21'—H21F 109.5
C14—C15—C16 124.5 (5) H21E—C21'—H21F 109.5
C16—C15—H15 117.8 C18'—C22'—H22D 109.5
C11—C16—C18 126.4 (5) C18'—C22'—H22E 109.5
C15—C16—C11 117.6 (5) C18'—C22'—H22F 109.5
C15—C16—C18 115.9 (5) H22D—C22'—H22E 109.5
C12—C17—H17 108.0 H22D—C22'—H22F 109.5
C20—C17—C12 109.2 (3) H22E—C22'—H22F 109.5
C20—C17—H17 108.0 C18'—C23'—H23D 109.5
C20—C17—C21 112.3 (3) C18'—C23'—H23E 109.5
C21—C17—C12 111.3 (3) C18'—C23'—H23F 109.5
C21—C17—H17 108.0 H23D—C23'—H23E 109.5
C16—C18—H18 107.1 H23D—C23'—H23F 109.5
C16—C18—C23 112.2 (4) H23E—C23'—H23F 109.5
C22—C18—C16 111.4 (4) C19'—C24'—H24D 109.5
C22—C18—H18 107.1 C19'—C24'—H24E 109.5
C22—C18—C23 111.6 (3) C19'—C24'—H24F 109.5
C23—C18—H18 107.1 H24D—C24'—H24E 109.5
C14—C19—H19 107.6 H24D—C24'—H24F 109.5
C24—C19—C14 114.7 (3) H24E—C24'—H24F 109.5
C24—C19—H19 107.6 C19'—C25'—H25D 109.5
C24—C19—C25 109.8 (4) C19'—C25'—H25E 109.5
C25—C19—C14 109.3 (3) C19'—C25'—H25F 109.5
C25—C19—H19 107.6 H25D—C25'—H25E 109.5
C17—C20—H20A 109.5 H25D—C25'—H25F 109.5
C17—C20—H20B 109.5 H25E—C25'—H25F 109.5
S1—N1—C1—C2 94.86 (14) C13—C12—C17—C20 60.6 (4)
S1—C11—C12—C13 170.0 (3) C13—C12—C17—C21 −63.9 (4)
S1—C11—C12—C17 −13.0 (6) C13—C14—C15—C16 0.0 (7)
S1—C11—C16—C15 −168.3 (4) C13—C14—C19—C24 14.0 (5)
S1—C11—C16—C18 13.7 (8) C13—C14—C19—C25 −109.8 (4)
S1—C11'—C16'—C15' 163.2 (4) C14—C15—C16—C11 −3.9 (9)
S1—C11'—C16'—C18' −22.9 (8) C14—C15—C16—C18 174.2 (4)
S1—C11'—C12'—C13' −164.4 (3) C15—C14—C19—C24 −170.1 (4)
S1—C11'—C12'—C17' 23.3 (5) C15—C14—C19—C25 66.1 (5)
O1—S1—N1—C1 −50.19 (14) C15—C16—C18—C22 75.9 (6)
O1—S1—C11—C12 −166.8 (3) C15—C16—C18—C23 −50.0 (6)
O1—S1—C11—C16 7.5 (5) C16—C11—C12—C13 −4.3 (6)
O2—S1—N1—C1 −176.69 (12) C16—C11—C12—C17 172.6 (4)
O2—S1—C11—C12 −44.1 (4) C17—C12—C13—C14 −176.8 (3)
O2—S1—C11—C16 130.1 (4) C19—C14—C15—C16 −176.3 (5)
N1—S1—C11—C12 70.0 (4) C11'—S1—N1—C1 64.1 (2)
N1—S1—C11—C16 −115.7 (5) C11'—C16'—C15'—C14' 1.7 (8)
N1—C1—C2—N2 179.67 (13) C11'—C16'—C18'—C22' −120.3 (6)
C2—N2—C3—C4 60.00 (19) C11'—C16'—C18'—C23' 116.5 (6)
C2—N2—C5—C6 −62.17 (18) C11'—C12'—C13'—C14' −0.6 (5)
C2—N2—C7—C8 176.93 (14) C11'—C12'—C17'—C20' −129.7 (4)
C3—N2—C2—C1 61.08 (19) C11'—C12'—C17'—C21' 106.5 (4)
C3—N2—C5—C6 176.37 (15) C16'—C11'—C12'—C13' 8.1 (6)
C3—N2—C7—C8 −61.84 (18) C16'—C11'—C12'—C17' −164.2 (4)
C5—N2—C2—C1 −57.52 (18) C12'—C11'—C16'—C15' −8.7 (8)
C5—N2—C3—C4 −178.96 (15) C12'—C11'—C16'—C18' 165.2 (5)
C5—N2—C7—C8 56.47 (19) C12'—C13'—C14'—C15' −6.2 (5)
C7—N2—C2—C1 −178.09 (14) C12'—C13'—C14'—C19' 178.9 (3)
C7—N2—C3—C4 −58.08 (19) C13'—C12'—C17'—C20' 57.7 (4)
C7—N2—C5—C6 55.54 (19) C13'—C12'—C17'—C21' −66.0 (4)
C11—S1—N1—C1 71.5 (2) C13'—C14'—C15'—C16' 5.6 (7)
C11—C12—C13—C14 0.3 (5) C13'—C14'—C19'—C24' 75.7 (5)
C11—C12—C17—C20 −116.4 (4) C13'—C14'—C19'—C25' −48.8 (5)
C11—C12—C17—C21 119.1 (4) C15'—C16'—C18'—C22' 53.7 (6)
C11—C16—C18—C22 −106.2 (6) C15'—C16'—C18'—C23' −69.5 (6)
C11—C16—C18—C23 127.9 (6) C15'—C14'—C19'—C24' −99.0 (5)
C12—C11—C16—C15 6.0 (8) C15'—C14'—C19'—C25' 136.5 (4)
C12—C11—C16—C18 −172.0 (4) C17'—C12'—C13'—C14' 172.4 (3)
C12—C13—C14—C15 1.9 (5) C18'—C16'—C15'—C14' −172.7 (4)
C12—C13—C14—C19 178.0 (3) C19'—C14'—C15'—C16' −179.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4D···O3 0.83 (2) 2.04 (2) 2.867 (2) 171 (2)
O3—H3C···O5 0.90 (2) 1.83 (2) 2.725 (2) 174 (2)
O3—H3D···O6i 0.85 (3) 2.08 (3) 2.912 (2) 169 (2)
O5—H5C···O2ii 0.83 (3) 2.09 (3) 2.901 (2) 165 (2)
O6—H6D···O4 0.86 (2) 1.95 (2) 2.787 (2) 167 (2)
O6—H6E···O3iii 0.82 (3) 2.03 (3) 2.845 (2) 170 (2)
O5—H5D···N1 0.84 (3) 2.05 (3) 2.881 (2) 170 (2)
O4—H4E···N1ii 0.92 (3) 2.06 (3) 2.959 (2) 165 (3)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+3, −y+2, −z+1.

References

  1. Born, M., Mootz, D. & Schaefgen, S. (1995). Z. Naturforsch. Teil B, 50, 101–105.
  2. Buckley, B. R., Patel, A. P. & Wijayantha, K. G. U. (2013). J. Org. Chem. 78, 1289–1292. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Golz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153. [DOI] [PMC free article] [PubMed]
  5. Gómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345–1347. [DOI] [PubMed]
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Hu, X. E. (2003). Tetrahedron, 60, 2701–2743.
  8. Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.
  9. Kostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009). CrystEngComm, 11, 82–86.
  10. Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250–1252.
  11. Li, F., Li, T.-H., Su, W., Gao, S.-Y. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582–1587.
  12. Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  13. Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544–o546.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Song, X.-Y., Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1220–1222.
  16. Vasiliev, A. D., Astachov, A. M., Kekin, Y. V., Kruglyakova, L. A. & Stepanov, R. S. (2001). Acta Cryst. C57, 1192–1193. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008105/sj5448sup1.cif

e-71-00564-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008105/sj5448Isup2.hkl

e-71-00564-Isup2.hkl (322.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008105/sj5448Isup3.cml

CCDC reference: 1061352

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES