Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 22;71(Pt 5):536–539. doi: 10.1107/S2056989015007446

Crystal structure of bis­[4-(1H-pyrrol-1-yl)phen­yl] ferrocene-1,1′-di­carboxyl­ate: a potential chemotherapeutic drug

Wanda I Pérez a, Arnold L Rheingold b, Enrique Meléndez a,*
PMCID: PMC4420060  PMID: 25995874

The solid-state structure of a disubstituted ferrocene with electrochemically active pendant groups has been determined. This is a potential chemotherapeutic drug.

Keywords: crystal structure, disubstituted ferrocene, anti­proliferative, chemotherapeutic drug, MCF-7, pyrrole

Abstract

The title iron(II) complex, [Fe(C16H12NO2)2], crystallizes in the ortho­rhom­bic space group Pbca with the Fe2+ cation positioned on an inversion center. The cyclo­penta­dienyl (Cp) rings adopt an anti conformation in contrast with other substituted ferrocenes in which the Cp rings appear in a nearly eclipsed conformation. The Cp and the aromatic rings are positioned out of the plane, with a twist angle of 70.20 (12)°, and the C(Cp)—C(CO) bond length is shorter than a typical C—C single bond, which suggests a partial double-bond character and delocalization with the Cp π system. The structure of the complex is compared to other functionalized ferrocenes synthesized in our laboratory.

Chemical context  

The gold standard of treatment for breast cancer has traditionally been cisplatin, a metal-based agent. Its administration, alone or in combination with other drugs, is also highly effective against various other types of cancers, including ovarian, head and neck, bladder, testicular and lung cancers (Galanski et al., 2005; Sandler et al., 2011). However, its clinical use suffers from major drawbacks, such as severe toxic side effects including neurotoxicity, hepatotoxicity, and nephrotoxicity (Pabla & Dong, 2008), as well as a drug-resistance phenomenon which leads to unsuccessful treatment (Dempke et al., 2000). Consequently, other metal-based drugs have been investigated, among them ferrocenes (Köpf-Maier et al., 1984). Ferrocene has the versatility of easy functionalization providing a fertile field for structural modification and to study structure–activity relationship (SAR).

Our group has been working in this field for many years, leading to exciting and biologically active ferrocenes. A wide variety of pendant (functional) groups have been attached or linked to the Cp ring to tailor the anti-proliferative properties of ferrocene, many of them with great success (Braga & Silva, 2013; Gasser et al., 2011; Jaouen & Metzler-Nolte, 2010; Fouda et al., 2007; Jaouen, 2006; van Staveren & Metzler-Nolte, 2004; Nguyen et al., 2009; Top et al., 2003; Vessières et al., 2005, 2006; Meléndez, 2012; Vera et al., 2011, 2014). Lately, a new range of organic chemotherapeutic compounds have been studied using pyrrole derivatives. These pyrrole derivatives have revealed good anti-proliferative activity and an increase in membrane permeability, allowing the compounds to reach the nucleus (Ghorab et al., 2014; Abou El Ella et al., 2008; Chatzopoulou et al., 2014; Mohamed et al., 2013; Hassan et al., 2009; Esteves et al., 2010; Clark et al., 2007; Merighi et al., 2003). Therefore, we functionalized ferrocene with a pyrrole, 4-(1H-pyrrol-1-yl)phenol, obtaining three new ferrocenes: 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedi­carboxyl­ate, 1,4-(1H-pyrrol-1-yl)phenyl, 1′-carboxyl ferrocene­carboxyl­ate (Fc-(CO2-Ph-4-Py)CO2H) and 4-(1H-pyrrol-1-yl)phenyl ferro­cene­acetyl­ate (Fc-CH2CO2-Ph-4-Py). We investigated their biological activities on breast cancer cell line (MCF-7) and among these ferrocenes, 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedi­carboxyl­ate (I) was shown to be most active in this series (Pérez et al., 2015). Nevertheless, the solid-state structure of (I) has been elusive (Pérez et al., 2015). The importance of this complex is the incorporation of pyrrole groups, which are derivatives of biologically active compounds, as well as pyrrole being an electrochemically active group precursor of polymeric mat­erial. In addition, ferrocene anti­cancer activity has been associated with its redox behavior and the capability to produce reactive oxygen species (ROS) (Acevedo et al., 2012; Kovjazin et al., 2003; Tabbi et al., 2002; Osella et al., 2005). Thus, the attachment of an electrochemically active group on ferrocene could potentiate the production of ROS and enhance its anti­cancer activity.graphic file with name e-71-00536-scheme1.jpg

Given that the solid-state structure of this complex is not available, we determined the crystal structure of bis­[4-(1H-pyrrol-1-yl)phen­yl] ferrocene-1,1′-di­carboxyl­ate, (I). Additionally, we compared the obtained crystal structure with other functionalized ferrocenes synthesized in our laboratory viz.: 4-bromo­phenyl (II) and 4-chloro­phenyl ferrocene­carboxyl­ate (III) (Vera et al., 2014), and 1,1′-methyl ferrocenedi­carboxyl­ate (IV) (Gao et al., 2009).

Structural commentary  

The asymmetric unit contains one half-mol­ecule since Fe2+ lies on an inversion center, Fig. 1. This symmetry is implied by the NMR data where only one set of signals were found for H2/H5 and H3/H4 of the Cp rings, as well as the H2/H6 and H3/H5 of the phenyl and H2/H5 and H3/H4 of the pyrrole groups. Consequently, the Cp rings adopt a perfect anti conformation. The average Fe—C(Cp) bond length is 2.044 (10) Å, which is very similar to that reported for ferrocene (Dunitz et al., 1956) and other structures previously reported by our lab (Vera et al., 2014; Gao et al., 2009). The Fe—C bond length of the substituted carbon [Fe—C1 2.032 (2) Å] is shorter that the remaining Fe—C bond lengths due to the inductive effect of the carboxyl­ate on the Cp ring. The twist angles between the Cp ring and the carboxyl­ate and the Cp ring and the aromatic ring are 14.4 (3)° (above the Cp plane) and 70.20 (12)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related to labelled ones by the symmetry operation −x, −y, −z.

To put it in perspective, we compare (I) with previously synthesized ferrocenes in our group containing only one Cp functionalized and a phenyl group attached to the carboxyl­ate, but with Br and Cl instead of pyrrole in the 4-position, (II) and (III) (CCDC 949002 and 949003, Vera et al., 2014). First, in the 4-bromo­phenyl and 4-chloro­phenyl derivatives, the Cp rings are positioned in a nearly eclipsed conformation and parallel with stagger angles < 3° and Cp tilt angles of 0.48–1.25°. In contrast, (I) has a perfect anti conformation. The carbonyl carbon of (I) has a distorted trigonal–planar geometry, analogous to the 4-chloro­phenyl and 4-bromo­phenyl ferrocene­carboxyl­ates. The twist angles between the Cp ring and the carboxyl­ate for 4-bromo and 4-chloro­phenyl ferrocene­carboxyl­ates (6.75–10.15°) are smaller than that of the subject complex, 14.4 (3)°. Additionally, as mentioned previously, the carbonyl oxygen of (I) lies above the Cp plane whereas for the bromo and chloro derivatives, the carbonyl oxygens lie below the Cp plane. The twist angle between the Cp and the aromatic ring is 70.20 (12)° in (I), while in (II) and (III) the two rings are positioned at higher angles, approaching a perpendicular position.

The average Fe—C(Cp*) bond lengths of the substituted Cp rings in the 4-bromo and 4-chloro­phenyl derivatives are identical, within experimental error, as in (I) [2.044 (13) Å]. As mentioned before, the Fe—C bond length where the pendant group is attached is substanti­ally shorter than the remaining Fe—C(Cp) distances. The same bonding pattern is also observed for the 4-bromo and 4-chloro­phenyl ferrocene­carboxyl­ates. The C(Cp)—C(CO) bond length in (I), C1—C6, is shorter than a typical C—C single bond, [1.473 (3) versus 1.54 Å (single bond); Pauling, 1960]. This suggests partial double-bond character and delocalization with the Cp π system in analogous manner to that for the 4-bromo and 4-chloro derivatives.

In the structure of the disubstituted ferrocene Fe(C5H4CO2CH3)2, (IV) (Gao et al., 2009), the average Fe—C(Cp) bond lengths are 2.048 (11)/2.049 (14) Å, similar to the title complex but the Cp rings adopt almost an eclipsed conformation with a stagger angle of 2.37° (Fig. 2). In addition, the functional groups are not positioned perfectly anti to each other. The Fe—C(Cp)—C(CO) bond in (IV) [1.477 (4) Å] is notably shorter than a typical C—C single bond (1.54 Å), in a similar manner to the title complex, suggesting delocalization with the Cp π system.

Figure 2.

Figure 2

A Newman projection of Fe(C5H4CO2CH3)2.

Finally, (I) contains two π ring systems, 4-(1H-pyrrol-1-yl)phenyl, which in principle could be involved in intra­molecular π–π or C—H⋯π stacking similar to other 1,1′-disubstituted ferrocenes with an extended π ring system (Okabe et al., 2009; Togni et al., 1994; Gelin & Thummel, 1992). However, such π–π or C—H⋯π stacking is not observed in (I) since the Cp rings adopt an anti conformation.

Synthesis and crystallization  

The synthesis of (I) was accomplished by treating 1,1′-ferrocenedi­carb­oxy­lic acid with oxalyl chloride according to our recently published procedure (Pérez et al., 2015). 1H NMR (500 MHz, CDCl3) (δ p.p.m.): 7.37 (2H, d, ph; 3 J = 8.8 Hz), 7.25 (2H, d, py; 3 J = 2.8 Hz), 7.03 (2H, dd, ph; 3 J = 1.3 Hz), 6.34 (2H, dd, py; 3 J = 1.6 Hz), 5.08 (2H, overlapping doublets, AA′, Cp), 4.64 (2H, overlapping doublets, BB′, Cp). 13CNMR (125 MHz, CDCl3) (δ p.p.m.): 169.0 (C=O), 148.3, 138.6, 122.9, 121.5, 119.5, 110.5, 73.4, 72.4, 72.0. Analysis calculated for C32H24O4FeN2: C, 69.05; H, 4.40; found: C, 68.62; H, 4.46.

Crystallization of (I) was performed inside an NMR tube containing CD2Cl2 for a period of two weeks, obtaining block-shaped orange crystals suitable for X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned in idealized locations (C(6)—H = 0.95, C(5)—H = 1.00 Å with U iso(H) = 1.2U eq(C).

Table 1. Experimental details.

Crystal data
Chemical formula [Fe(C16H12NO2)2]
M r 556.38
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c () 10.6386(15), 7.3948(10), 30.554(4)
V (3) 2403.7(6)
Z 4
Radiation type Mo K
(mm1) 0.67
Crystal size (mm) 0.28 0.26 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010)
T min, T max 0.833, 0.877
No. of measured, independent and observed [I > 2(I)] reflections 12444, 2999, 2247
R int 0.077
(sin /)max (1) 0.669
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.044, 0.117, 1.02
No. of reflections 2999
No. of parameters 178
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.34, 0.62

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007446/bg2552sup1.cif

e-71-00536-sup1.cif (409KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007446/bg2552Isup2.hkl

e-71-00536-Isup2.hkl (164.8KB, hkl)

CCDC reference: 1054149

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

EM is thankful for the financial support of NIH-RISE 2 Best program (NIH-R25GM088023) for the research assistantship of WIP (graduate student).

supplementary crystallographic information

Crystal data

[Fe(C16H12NO2)2] Dx = 1.537 Mg m3
Mr = 556.38 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 2807 reflections
a = 10.6386 (15) Å θ = 2.7–28.1°
b = 7.3948 (10) Å µ = 0.67 mm1
c = 30.554 (4) Å T = 100 K
V = 2403.7 (6) Å3 Block, orange
Z = 4 0.28 × 0.26 × 0.23 mm
F(000) = 1152

Data collection

Bruker APEXII CCD diffractometer 2247 reflections with I > 2σ(I)
φ and ω scans Rint = 0.077
Absorption correction: multi-scan (SADABS; Bruker, 2010) θmax = 28.4°, θmin = 2.7°
Tmin = 0.833, Tmax = 0.877 h = −13→14
12444 measured reflections k = −9→9
2999 independent reflections l = −37→40

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.047P)2 + 0.928P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2999 reflections Δρmax = 0.34 e Å3
178 parameters Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.5000 0.5000 0.5000 0.01323 (14)
O1 0.23108 (15) 0.4748 (2) 0.41347 (5) 0.0213 (4)
O2 0.41465 (13) 0.3430 (2) 0.39352 (4) 0.0173 (3)
N1 0.37269 (16) 0.3889 (2) 0.21120 (5) 0.0133 (4)
C1 0.3680 (2) 0.3523 (3) 0.46783 (7) 0.0149 (4)
C2 0.3145 (2) 0.4294 (3) 0.50667 (6) 0.0169 (4)
H2A 0.2415 0.5142 0.5081 0.020*
C3 0.3857 (2) 0.3643 (3) 0.54286 (7) 0.0216 (5)
H3A 0.3716 0.3970 0.5742 0.026*
C4 0.4812 (2) 0.2469 (3) 0.52692 (7) 0.0191 (5)
H4A 0.5454 0.1827 0.5451 0.023*
C5 0.4712 (2) 0.2403 (3) 0.48035 (7) 0.0166 (4)
H5A 0.5262 0.1693 0.4601 0.020*
C6 0.3264 (2) 0.3975 (3) 0.42318 (6) 0.0144 (4)
C7 0.3923 (2) 0.3684 (3) 0.34853 (6) 0.0145 (4)
C8 0.48316 (19) 0.4601 (3) 0.32540 (7) 0.0155 (4)
H8A 0.5502 0.5182 0.3404 0.019*
C9 0.47630 (19) 0.4673 (3) 0.27993 (7) 0.0151 (4)
H9A 0.5398 0.5288 0.2639 0.018*
C10 0.37736 (19) 0.3853 (2) 0.25769 (6) 0.0121 (4)
C11 0.28353 (19) 0.2994 (3) 0.28206 (7) 0.0149 (4)
H11A 0.2137 0.2469 0.2674 0.018*
C12 0.29095 (19) 0.2899 (3) 0.32731 (6) 0.0154 (4)
H12A 0.2272 0.2302 0.3436 0.018*
C13 0.2795 (2) 0.3154 (3) 0.18518 (7) 0.0174 (4)
H13A 0.2077 0.2518 0.1954 0.021*
C14 0.3076 (2) 0.3494 (3) 0.14240 (7) 0.0195 (5)
H14A 0.2587 0.3153 0.1177 0.023*
C15 0.4232 (2) 0.4449 (3) 0.14143 (7) 0.0213 (5)
H15A 0.4661 0.4862 0.1161 0.026*
C16 0.4613 (2) 0.4663 (3) 0.18374 (7) 0.0184 (4)
H16A 0.5364 0.5248 0.1929 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0159 (2) 0.0111 (2) 0.0127 (2) −0.00228 (16) −0.00142 (16) 0.00108 (15)
O1 0.0196 (9) 0.0274 (8) 0.0169 (8) 0.0076 (7) −0.0004 (6) −0.0006 (6)
O2 0.0162 (8) 0.0220 (8) 0.0137 (7) 0.0029 (6) −0.0003 (6) −0.0013 (6)
N1 0.0123 (8) 0.0123 (8) 0.0154 (8) −0.0003 (7) 0.0015 (7) −0.0003 (6)
C1 0.0164 (10) 0.0125 (9) 0.0160 (10) −0.0039 (8) 0.0003 (8) −0.0003 (7)
C2 0.0161 (10) 0.0168 (10) 0.0179 (10) −0.0040 (9) 0.0031 (8) 0.0006 (8)
C3 0.0292 (12) 0.0190 (11) 0.0165 (11) −0.0081 (10) 0.0015 (9) 0.0016 (8)
C4 0.0232 (12) 0.0139 (10) 0.0201 (11) −0.0055 (9) −0.0051 (9) 0.0046 (8)
C5 0.0197 (11) 0.0105 (9) 0.0197 (11) −0.0009 (9) −0.0040 (9) 0.0007 (8)
C6 0.0149 (10) 0.0121 (9) 0.0162 (10) −0.0015 (8) 0.0004 (8) −0.0014 (7)
C7 0.0157 (10) 0.0137 (9) 0.0142 (10) 0.0024 (8) −0.0008 (8) −0.0014 (7)
C8 0.0135 (10) 0.0150 (10) 0.0180 (10) −0.0025 (8) −0.0008 (8) −0.0027 (8)
C9 0.0127 (10) 0.0135 (9) 0.0192 (10) −0.0006 (8) 0.0023 (8) 0.0003 (8)
C10 0.0127 (10) 0.0085 (9) 0.0151 (10) 0.0031 (8) 0.0003 (8) −0.0006 (7)
C11 0.0118 (10) 0.0136 (9) 0.0193 (10) −0.0027 (8) −0.0012 (8) 0.0004 (8)
C12 0.0150 (10) 0.0138 (9) 0.0173 (10) −0.0010 (8) 0.0023 (8) 0.0018 (8)
C13 0.0139 (10) 0.0163 (10) 0.0219 (11) −0.0002 (9) −0.0005 (8) −0.0016 (8)
C14 0.0211 (11) 0.0196 (11) 0.0177 (10) 0.0066 (9) −0.0016 (9) −0.0022 (8)
C15 0.0250 (13) 0.0211 (11) 0.0179 (11) 0.0031 (10) 0.0048 (9) 0.0015 (9)
C16 0.0161 (10) 0.0176 (10) 0.0217 (11) −0.0032 (9) 0.0035 (9) 0.0024 (8)

Geometric parameters (Å, º)

Fe1—C1 2.032 (2) C3—H3A 1.0000
Fe1—C1i 2.033 (2) C4—C5 1.428 (3)
Fe1—C5 2.035 (2) C4—H4A 1.0000
Fe1—C5i 2.035 (2) C5—H5A 1.0000
Fe1—C3i 2.050 (2) C7—C8 1.376 (3)
Fe1—C3 2.050 (2) C7—C12 1.386 (3)
Fe1—C2 2.051 (2) C8—C9 1.392 (3)
Fe1—C2i 2.051 (2) C8—H8A 0.9500
Fe1—C4i 2.055 (2) C9—C10 1.392 (3)
Fe1—C4 2.055 (2) C9—H9A 0.9500
O1—C6 1.201 (3) C10—C11 1.398 (3)
O2—C6 1.366 (2) C11—C12 1.387 (3)
O2—C7 1.407 (2) C11—H11A 0.9500
N1—C13 1.382 (3) C12—H12A 0.9500
N1—C16 1.386 (3) C13—C14 1.364 (3)
N1—C10 1.422 (3) C13—H13A 0.9500
C1—C5 1.427 (3) C14—C15 1.418 (3)
C1—C2 1.434 (3) C14—H14A 0.9500
C1—C6 1.473 (3) C15—C16 1.364 (3)
C2—C3 1.424 (3) C15—H15A 0.9500
C2—H2A 1.0000 C16—H16A 0.9500
C3—C4 1.423 (3)
C1—Fe1—C1i 180.0 C3—C2—Fe1 69.63 (13)
C1—Fe1—C5 41.09 (8) C1—C2—Fe1 68.75 (12)
C1i—Fe1—C5 138.91 (8) C3—C2—H2A 126.3
C1—Fe1—C5i 138.91 (8) C1—C2—H2A 126.3
C1i—Fe1—C5i 41.09 (8) Fe1—C2—H2A 126.3
C5—Fe1—C5i 180.0 C4—C3—C2 108.66 (19)
C1—Fe1—C3i 111.35 (8) C4—C3—Fe1 69.90 (12)
C1i—Fe1—C3i 68.66 (8) C2—C3—Fe1 69.74 (12)
C5—Fe1—C3i 111.27 (9) C4—C3—H3A 125.7
C5i—Fe1—C3i 68.73 (9) C2—C3—H3A 125.7
C1—Fe1—C3 68.65 (8) Fe1—C3—H3A 125.7
C1i—Fe1—C3 111.34 (8) C3—C4—C5 107.97 (18)
C5—Fe1—C3 68.73 (9) C3—C4—Fe1 69.54 (12)
C5i—Fe1—C3 111.27 (9) C5—C4—Fe1 68.84 (11)
C3i—Fe1—C3 180.0 C3—C4—H4A 126.0
C1—Fe1—C2 41.11 (8) C5—C4—H4A 126.0
C1i—Fe1—C2 138.89 (8) Fe1—C4—H4A 126.0
C5—Fe1—C2 69.15 (9) C1—C5—C4 107.75 (18)
C5i—Fe1—C2 110.85 (9) C1—C5—Fe1 69.36 (11)
C3i—Fe1—C2 139.37 (9) C4—C5—Fe1 70.30 (11)
C3—Fe1—C2 40.63 (9) C1—C5—H5A 126.1
C1—Fe1—C2i 138.89 (8) C4—C5—H5A 126.1
C1i—Fe1—C2i 41.11 (8) Fe1—C5—H5A 126.1
C5—Fe1—C2i 110.85 (9) O1—C6—O2 123.84 (18)
C5i—Fe1—C2i 69.15 (9) O1—C6—C1 126.17 (19)
C3i—Fe1—C2i 40.63 (9) O2—C6—C1 109.97 (18)
C3—Fe1—C2i 139.37 (9) C8—C7—C12 120.85 (19)
C2—Fe1—C2i 180.0 C8—C7—O2 116.66 (18)
C1—Fe1—C4i 111.29 (8) C12—C7—O2 122.16 (18)
C1i—Fe1—C4i 68.71 (8) C7—C8—C9 119.63 (19)
C5—Fe1—C4i 139.13 (9) C7—C8—H8A 120.2
C5i—Fe1—C4i 40.87 (9) C9—C8—H8A 120.2
C3i—Fe1—C4i 40.56 (9) C10—C9—C8 120.67 (19)
C3—Fe1—C4i 139.44 (9) C10—C9—H9A 119.7
C2—Fe1—C4i 111.44 (9) C8—C9—H9A 119.7
C2i—Fe1—C4i 68.56 (9) C9—C10—C11 118.55 (18)
C1—Fe1—C4 68.71 (8) C9—C10—N1 120.40 (18)
C1i—Fe1—C4 111.29 (8) C11—C10—N1 121.05 (17)
C5—Fe1—C4 40.87 (9) C12—C11—C10 120.90 (19)
C5i—Fe1—C4 139.13 (9) C12—C11—H11A 119.5
C3i—Fe1—C4 139.44 (9) C10—C11—H11A 119.5
C3—Fe1—C4 40.56 (9) C7—C12—C11 119.31 (19)
C2—Fe1—C4 68.56 (9) C7—C12—H12A 120.3
C2i—Fe1—C4 111.44 (9) C11—C12—H12A 120.3
C4i—Fe1—C4 180.00 (11) C14—C13—N1 108.78 (19)
C6—O2—C7 119.52 (16) C14—C13—H13A 125.6
C13—N1—C16 107.58 (17) N1—C13—H13A 125.6
C13—N1—C10 126.34 (17) C13—C14—C15 107.54 (19)
C16—N1—C10 126.08 (18) C13—C14—H14A 126.2
C5—C1—C2 108.28 (18) C15—C14—H14A 126.2
C5—C1—C6 127.65 (19) C16—C15—C14 107.2 (2)
C2—C1—C6 123.89 (19) C16—C15—H15A 126.4
C5—C1—Fe1 69.56 (12) C14—C15—H15A 126.4
C2—C1—Fe1 70.14 (12) C15—C16—N1 108.9 (2)
C6—C1—Fe1 122.25 (14) C15—C16—H16A 125.6
C3—C2—C1 107.3 (2) N1—C16—H16A 125.6

Symmetry code: (i) −x+1, −y+1, −z+1.

References

  1. Abou El Ella, D. A., Ghorab, M. M., Noaman, E., Heiba, H. I. & Khalil, A. I. (2008). Bioorg. Med. Chem. 16, 2391–2402. [DOI] [PubMed]
  2. Acevedo, C. Y., Meléndez, E., Singh, S. P. & Ramirez-Vick, J. E. (2012). J. Cancer Sci. Ther. 4, 271–275.
  3. Braga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626–5639.
  4. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chatzopoulou, M., Patsilinakos, A., Vallianatou, T., Prnova, M. S., Žakelj, S., Ragno, R., Stefek, M., Kristl, A., Tsantili-Kakoulidou, A. & Demopoulos, V. J. (2014). Bioorg. Med. Chem. 22, 2194–2207. [DOI] [PubMed]
  6. Clark, M. P., George, K. M., Bookland, R. G., Chen, J., Laughlin, S. K., Thakur, K. D., Lee, W., Davis, J. R., Cabrera, E. J., Brugel, T. A., VanRens, J. C., Laufersweiler, M. J., Maier, J. A., Sabat, M. P., Golebiowski, A., Easwaran, V., Webster, M. E., De, B. & Zhang, G. (2007). Bioorg. Med. Chem. Lett. 17, 1250–1253. [DOI] [PubMed]
  7. Dempke, W., Voigt, W., Grothey, A., Hill, B. T. & Schmoll, H. J. (2000). Anticancer Drugs, 11, 225–236. [DOI] [PubMed]
  8. Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375.
  9. Esteves, M. A., Ortet, O., Capelo, A., Supuran, C. T., Marques, S. M. & Santos, M. A. (2010). Bioorg. Med. Chem. Lett. 20, 3623–3627. [DOI] [PubMed]
  10. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.
  11. Galanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075–2094. [DOI] [PubMed]
  12. Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, 10.1155/2009/420784. [DOI] [PMC free article] [PubMed]
  13. Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. [DOI] [PMC free article] [PubMed]
  14. Gelin, F. & Thummel, R. P. (1992). J. Org. Chem. 57, 3780–3783.
  15. Ghorab, M. M., Alsaid, M. S., Ceruso, M., Nissan, Y. M. & Supuran, C. T. (2014). Bioorg. Med. Chem. 22, 3684–3695. [DOI] [PubMed]
  16. Hassan, S. M., El-Maghraby, A. A., Abdel Aal, M. M. & Bashandy, M. S. (2009). Phosphorus Sulfur Silicon, 184, 291–308.
  17. Jaouen, G. (2006). Bioorganometallics, pp. 65–95. Weinheim: Wiley-VCH.
  18. Jaouen, G. & Metzler-Nolte, N. (2010). Medicinal Organometallic Chemistry, pp. 81–117. Heidelberg, Dordrecht, London, New York: Springer-Verlag.
  19. Köpf-Maier, P., Köpf, H. & Neuse, E. W. (1984). J. Cancer Res. Clin. Oncol 108, 336–340. [DOI] [PMC free article] [PubMed]
  20. Kovjazin, R., Eldar, T., Patya, M., Vanichkin, A., Lander, H. M. & Novogrodsky, A. (2003). FASEB J. 17, 467–469. [DOI] [PubMed]
  21. Meléndez, E. (2012). Inorg. Chim. Acta, 393, 36–52. [DOI] [PMC free article] [PubMed]
  22. Merighi, S., Mirandola, P., Varani, K., Gessi, S., Leung, E., Baraldi, P. G., Tabrizi, M. A. & Borea, P. A. A. (2003). Pharmacol. Ther. 100, 31–48. [DOI] [PubMed]
  23. Mohamed, M. S., Kamel, R. & Abd El-hameed, R. H. (2013). Med. Chem. Res. 22, 2244–2252.
  24. Nguyen, A., Top, S., Pigeon, P., Vessières, A., Hillard, E. A., Plamont, M.-A., Huché, M., Rigamonti, C. & Jaouen, G. (2009). Chem. Eur. J. 15, 684–696. [DOI] [PubMed]
  25. Okabe, T., Nakazaki, K., Igaue, T., Nakamura, N., Donnio, B., Guillon, D. & Gallani, J.-L. (2009). J. Appl. Cryst. 42, 63–68.
  26. Osella, D., Mahboobi, H., Colangelo, D., Cavigiolio, G., Vessières, A. & Jaouen, G. (2005). Inorg. Chim. Acta, 358, 1993–1998.
  27. Pabla, N. & Dong, Z. (2008). Kidney Int. 73, 994–1007. [DOI] [PubMed]
  28. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
  29. Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471–479. [DOI] [PMC free article] [PubMed]
  30. Sandler, A., Graham, C., Baggstrom, M., Herbst, R., Zergebel, C., Saito, K. & Jones, D. (2011). J. Thorac. Oncol. 6, 1400–1406. [DOI] [PubMed]
  31. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  32. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  33. Staveren, D. R. van & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5986. [DOI] [PubMed]
  34. Tabbì, G., Cassino, C., Cavigiolio, G., Colangelo, D., Ghiglia, A., Viano, I. & Osella, D. (2002). J. Med. Chem. 45, 5786–5796. [DOI] [PubMed]
  35. Togni, A., Hobi, M., Rihs, G., Rist, G., Albinati, A., Zanello, P., Zech, D. & Keller, H. (1994). Organometallics, 13, 1224–1234.
  36. Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236. [DOI] [PubMed]
  37. Vera, J. L., Gao, L. M., Santana, A., Matta, J. & Meléndez, E. (2011). Dalton Trans. 40, 9557–9565. [DOI] [PMC free article] [PubMed]
  38. Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204–214. [DOI] [PMC free article] [PubMed]
  39. Vessières, A., Top, S., Beck, W., Hillard, E. & Jaouen, G. (2006). Dalton Trans. pp. 529–541. [DOI] [PubMed]
  40. Vessières, A., Top, S., Pigeon, P., Hillard, E., Boubeker, L., Spera, D. & Jaouen, G. (2005). J. Med. Chem. 48, 3937–3940. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007446/bg2552sup1.cif

e-71-00536-sup1.cif (409KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007446/bg2552Isup2.hkl

e-71-00536-Isup2.hkl (164.8KB, hkl)

CCDC reference: 1054149

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES