Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 18;71(Pt 5):516–519. doi: 10.1107/S2056989015007422

Crystal structure of rac-(3a’R,9a’R)-3a’-(indol-3-yl)-1′,2′,3′,3a’,4′,9a’-hexa­hydro­spiro­[cyclo­pentane-1,9′-penta­leno[1,2-b]indole] p-xylene hemisolvate

Wayland E Noland a,*, Matthew A Worth a, Andrew K Schneerer a, Courtney L Paal a, Kenneth J Tritch a
PMCID: PMC4420065  PMID: 25995869

The title compound is the first reported characterized 2:2 product from acid-catalyzed condensation of indole with cyclo­penta­none. In the crystal, mol­ecules are connected by a series of N—H⋯π and C—H⋯π inter­actions, forming slabs parallel to (010).

Keywords: crystal structure, annulation, indole, cyclic ketone, disorder, X—H⋯π inter­actions

Abstract

The title compound, C26H26N2·0.5C8H10, is the first reported characterized 2:2 product from acid-catalyzed condensation of indole with cyclo­penta­none and no other 2:2 products were observed. Recrystallization from p-xylene gave the title hemisolvate with the p-xylene mol­ecule located about an inversion center. The terminal penta­lene ring is envelope-flap disordered at the C atom farthest from the skeletal indole unit, with a refined occupancy ratio of 0.819 (4):0.181 (4). The major component has this C atom bent away from the spiro-fused cyclo­pentane ring. In the crystal, mol­ecules are connected by N—H⋯π inter­actions, forming chains along [100], and N—H⋯π and C—H⋯π inter­actions, forming chains along [001], which results in the formation of slabs parallel to (010).

Chemical context  

Condensations of indole with ketones and aldehydes under mildly acidic conditions generally give 2:1 bis­indole products analogous to (2) (see Fig. 1; Shiri et al., 2010). Several examples have shown anti­cancer activity (Maciejewska et al., 2006; Lee et al., 2008), although biological activities are more commonly observed from bis­indoles that include additional heterocyclic moieties (Gu et al., 1999; Andreani et al., 2008). Strong acid catalysts, such as BF3 etherate, give higher-order products, including (3) (Banerji et al., 1983). Moderate conditions, such as dilute hydro­chloric acid, generally favor 2:2 products. When a good dienophile is present, the inter­mediate 3-vinyl­indole can be trapped by a Diels–Alder reaction, giving cyclo­adducts such as (4) (Noland et al., 1993).

Figure 1.

Figure 1

Contextual compounds.

For most ketones and aldehydes, the major 2:2 product is of type (5) or (6) (Bergman et al., 1989). A noteworthy exception is the cyclo­hexa­none product (7), reported by Guzei et al. (2012), which exhibits inter­esting physical and fluorescence properties. It was desirable to explore the use of cyclic ketones of other sizes to determine whether analogs of (7) might be obtained. To date, the only observed 2:2 products have been analogs of the title compound, (1) (Fig. 2). These products lack the physical and fluorescence behaviors shown by (7) and have been obtained as powders or crystalline solvates.graphic file with name e-71-00516-scheme1.jpg

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing the atom labeling. For clarity, only the major component is shown. Displacement ellipsoids are drawn at the 50% probability level. Unlabeled xylene atoms are related by the symmetry code −x + 2, −y, −z + 2.

Structural commentary  

The indole units are inclined to one another by 63.85 (4)° and are nearly planar, with r.m.s. deviations from their mean planes of 0.013 and 0.007 Å for C8–C13/C6/N7 and N20/C21–C28, respectively. The C1–C5 ring is C3/C3′ flap-disordered in two twist–envelope conformers, with a refined occupancy ratio of 0.819 (4):0.181 (4) (Fig. 3). The C15–C19 ring adopts an envelope conformation bent away from atom H12, with atom C15 as the flap.

Figure 3.

Figure 3

The (a) major and (b) minor components of compound (1) in the crystal, viewed roughly along [Inline graphic0Inline graphic]. The H atoms attached to the atoms that change position (viz. C2, C3, and C4) are labeled. Note the envelope conformation of the C15–C19 ring.

Supra­molecular features  

For lack of classical hydrogen-bond acceptors, it was anti­cipated that one or both N—H hydrogens would form short contacts with a ring centroid of another indole unit. Two N—H⋯π contacts are present; however, the axes of both N—H donor bonds are oblique and exocyclic to the acceptor rings. These and several C—H⋯π contacts are summarized in Table 1. The H7⋯Cg2 distance is ca 3.185 Å, too large to be considered a classical H⋯Cg contact. Therefore, atom H7 is depicted as forming a non-classical hydrogen bond with atom C26, the nearest C atom. Hence, the N7—H7⋯C26 contacts form chains along [100]. The distance of this contact, ca 2.66 Å, can be compared with the generic C⋯H van der Waals distance of 2.88 Å reported by Rowland & Taylor (1996). The various C—H⋯Cg contacts and the N20—H20⋯Cg3 contact form chains along [001]; see Table 1. The combination of these various contact leads to the formation of slabs parallel to (001). Glide planes are surrounded by indole systems, whereas inversion centers border the aliphatic portions of (1) and p-xylene (Fig. 4). Although crystals of (1) were only obtained as a solvate, there are no short contacts between (1) and p-xylene.

Table 1. Hydrogen-bond geometry (, ).

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N20/C21C23/C28, C23C28, C6/N7/C8/C13/C14 and C8C13, respectively.

DHA DH HA D A DHA
N7H7C26i 0.88 2.66 3.493(2) 157
C11H11Cg1ii 0.95 2.82 3.5419(16) 133
C12H12Cg2ii 0.95 2.70 3.4652(16) 138
N20H20Cg3iii 0.88 2.82 3.5654(14) 144
C21H21Cg4iii 0.95 2.92 3.4970(17) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 4.

Figure 4

The crystal packing of compound (1), viewed along the c axis. Only the H atoms involved in the various inter­molecular contacts have been included (see Table 1 for details).

Database survey  

A search of the Cambridge Structural Database (Version 5.36; update of November 2014; Groom & Allen, 2014) found several entries that are synthetically or structurally related to (1). Compound (8) formed via 2:3 condensation of indole with acetone, and autoxidation (Banerji et al., 1981; Fig. 1). Compound (9), prepared by ZnBr2-catalyzed cyclo­dimerization of trans-3-(β-styr­yl)indole, features a pendant indol-3-yl group in the same position as (1) and similar but stronger N—H⋯π contacts in the crystal (McNulty & McLeod, 2011; Fig. 5). No entries were found that contain the penta­leno[1,2-b]indole functionality, although (10) has a skeleton similar to (1) (Zhang et al., 2012).

Figure 5.

Figure 5

Database survey entries.

Synthesis and crystallization  

Indole (1.17 g) was dissolved in cyclo­penta­none (10 ml). After the system was flushed with nitro­gen, concentrated hydro­chloric acid (0.1 ml) was added. The resulting mixture was heated to 350 K for 5 d. After cooling to room temperature, di­chloro­methane (DCM, 20 ml), water (20 ml), sodium bicarbonate (500 mg), and sodium bis­ulfite solution (saturated, 30 ml) were added. The resulting mixture was stirred for 2 h. The organic portion was filtered through neutral alumina (H = 2 cm × D = 3 cm; DCM), and then concentrated at reduced pressure. The resulting residue was separated by column chromatography (SiO2, hexa­ne–ethyl acetate, gradient from 1:0 to 5:1). The desired fraction (Rf = 0.43 in 2:1) was concentrated at reduced pressure, giving the title compound as a white powder (yield: 877 mg, 48%; m.p. 466–468 K); 1H NMR (500 MHz, CD2Cl2): δ 8.005 (s, 1H, H20), 7.921 (s, 1H, H7), 7.518 (d, J = 7.0 Hz, 1H, H12), 7.480 (d, J = 7.9 Hz, 1H, H24), 7.354 (d, J = 7.9 Hz, 1H, H27), 7.320 (d, J = 7.1 Hz, 1H, H9), 7.146 (dd, J = 7.9, 7.7 Hz, 1H, H26), 7.081 (td, J = 7.1, 1.6, 1H, H10), 7.049 (td, J = 7.0, 1.6, 1H, H11), 7.018 (dd, J = 7.9, 7.7 Hz, 1H, H25), 6.806 (d, J = 2.6 Hz, 1H, H21), 3.090 (dd, J = 8.3, 5.6 Hz, 1H, H1), 2.500 (dt, J = 13.0, 7.3 Hz, 1H, H4B/D), 2.235 (dt, J = 13.0, 6.6 Hz, 1H, H4A/C), 2.165 (dt, J = 13.0, 8.7 Hz, 1H, H19A), 2.085–1.820 (m, 6H, H2B/D, H3B/D, H18A, H19B, H2A/C, H16A), 1.793–1.693 (m, 3H, H17A, H18B, H3A/C), 1.612–1.547 (m, 1H, H17B), 1.500 (ddd, J = 11.9, 7.3, 4.0 Hz, 1H, H16B); 13C NMR (126 MHz, CD2Cl2): δ 146.98 (C6), 141.67 (C8), 137.77 (C28), 126.29 (C23), 125.12 (C14), 124.36 (C13), 123.69 (C22), 122.26 (C26), 121.86 (C21), 120.99 (C10), 120.59 (C24), 119.75 (C11), 119.65 (C25), 118.99 (C12), 112.30 (C9), 111.18 (C27), 68.48 (C1), 54.26 (C5), 53.41 (C15), 42.34 (C16), 39.00 (C4), 33.72 (C19), 31.43 (C2), 28.08 (C3), 25.16 (C17, C18); IR (KBr, cm−1) 3413 (vs, N—H), 3044 (w), 2953 (s), 2868 (C—H), 1446 (s, C=C), 1250, 1101 (C—N), 1015, 749 (s, C—H); MS (EI, m/z) [M]+ calculated for C26H26N2 366.21, found 366.21. Analysis (Atlantic Microlab, Norcross, GA, USA) calculated for C26H26N2: C 85.21, H 7.15, N 7.64%; found C 85.30, H 7.18, N 7.62%.

Recrystallization was attempted from common solvents. The best crystals were obtained from p-xylene. Attempted sublimation (0.012 mm Hg, 460 K) of neat or hemisolvate samples resulted in slow decomposition with elimination of indole. The sublimate was a light yellow powder, roughly 93 mol% compound (1). No useful sublimed crystals were found.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and refined as riding atoms, with N—H = 0.88 Å and C—H = 0.95–1.00 Å, and with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(N,C) for other H atoms. The C1–C5 ring is disordered over two components with a refined occupancy ratio of 0.819 (4):0.181 (4). The disordered components were refined such that the only atoms occupying different sites are C3/C3′ and H atoms riding on C2/C2′, C3/C3′, and C4/C4′.

Table 2. Experimental details.

Crystal data
Chemical formula C26H26N20.5C8H10
M r 419.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c () 8.7618(7), 29.450(2), 9.6569(8)
() 114.732(1)
V (3) 2263.2(3)
Z 4
Radiation type Mo K
(mm1) 0.07
Crystal size (mm) 0.35 0.21 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.700, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 25883, 5184, 4102
R int 0.032
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.048, 0.126, 1.06
No. of reflections 5184
No. of parameters 294
No. of restraints 321
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.51, 0.37

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015007422/su5116sup1.cif

e-71-00516-sup1.cif (779.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007422/su5116Isup2.hkl

e-71-00516-Isup2.hkl (284.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007422/su5116Isup3.cml

CCDC reference: 1059822

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Victor G. Young Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystal structure analysis, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this work.

supplementary crystallographic information

Crystal data

C26H26N2·0.5C8H10 Dx = 1.231 Mg m3
Mr = 419.57 Melting point: 459 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.7618 (7) Å Cell parameters from 2946 reflections
b = 29.450 (2) Å θ = 2.4–27.3°
c = 9.6569 (8) Å µ = 0.07 mm1
β = 114.732 (1)° T = 173 K
V = 2263.2 (3) Å3 Block, colourless
Z = 4 0.35 × 0.21 × 0.13 mm
F(000) = 900

Data collection

Bruker APEXII CCD diffractometer 4102 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.032
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.700, Tmax = 0.746 k = −38→38
25883 measured reflections l = −12→12
5184 independent reflections

Refinement

Refinement on F2 321 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.8656P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5184 reflections Δρmax = 0.51 e Å3
294 parameters Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.44662 (19) 0.09927 (5) 0.06623 (16) 0.0282 (3)
H1 0.3383 0.1017 0.0771 0.034*
C2 0.5227 (3) 0.05186 (5) 0.1165 (2) 0.0462 (4) 0.819 (4)
H2A 0.5987 0.0441 0.0678 0.055* 0.819 (4)
H2B 0.4328 0.0287 0.0876 0.055* 0.819 (4)
C2' 0.5227 (3) 0.05186 (5) 0.1165 (2) 0.0462 (4) 0.181 (4)
H2C 0.5252 0.0353 0.0284 0.055* 0.181 (4)
H2D 0.4529 0.0343 0.1561 0.055* 0.181 (4)
C3 0.6179 (3) 0.05373 (7) 0.2856 (2) 0.0428 (5) 0.819 (4)
H3A 0.7056 0.0299 0.3217 0.051* 0.819 (4)
H3B 0.5417 0.0496 0.3367 0.051* 0.819 (4)
C3' 0.6949 (6) 0.0567 (2) 0.2367 (9) 0.0428 (5) 0.181 (4)
H3C 0.7774 0.0576 0.1913 0.051* 0.181 (4)
H3D 0.7229 0.0309 0.3089 0.051* 0.181 (4)
C4 0.6968 (2) 0.10088 (5) 0.31725 (17) 0.0335 (3) 0.819 (4)
H4A 0.8117 0.0998 0.3215 0.040* 0.819 (4)
H4B 0.7039 0.1125 0.4160 0.040* 0.819 (4)
C4' 0.6968 (2) 0.10088 (5) 0.31725 (17) 0.0335 (3) 0.181 (4)
H4C 0.8122 0.1133 0.3680 0.040* 0.181 (4)
H4D 0.6504 0.0968 0.3939 0.040* 0.181 (4)
C5 0.58207 (17) 0.13233 (5) 0.18429 (15) 0.0261 (3)
C6 0.66437 (17) 0.14891 (5) 0.08495 (16) 0.0262 (3)
N7 0.80742 (15) 0.17360 (4) 0.11129 (13) 0.0292 (3)
H7 0.8814 0.1831 0.2005 0.035*
C8 0.81381 (17) 0.18073 (5) −0.02801 (16) 0.0260 (3)
C9 0.93197 (17) 0.20408 (5) −0.06175 (17) 0.0292 (3)
H9 1.0285 0.2173 0.0165 0.035*
C10 0.90408 (18) 0.20741 (5) −0.21329 (17) 0.0299 (3)
H10 0.9825 0.2234 −0.2395 0.036*
C11 0.76282 (18) 0.18777 (5) −0.32891 (16) 0.0284 (3)
H11 0.7467 0.1908 −0.4321 0.034*
C12 0.64618 (17) 0.16398 (5) −0.29538 (16) 0.0253 (3)
H12 0.5512 0.1505 −0.3746 0.030*
C13 0.67016 (16) 0.16009 (4) −0.14320 (15) 0.0230 (3)
C14 0.57911 (17) 0.13989 (5) −0.06520 (15) 0.0240 (3)
C15 0.41925 (17) 0.11434 (4) −0.09859 (15) 0.0241 (3)
C16 0.26029 (17) 0.14373 (5) −0.17142 (17) 0.0297 (3)
H16A 0.2674 0.1639 −0.2506 0.036*
H16B 0.2454 0.1627 −0.0934 0.036*
C17 0.11381 (19) 0.11002 (5) −0.2425 (2) 0.0371 (4)
H17A 0.0327 0.1209 −0.3435 0.044*
H17B 0.0542 0.1062 −0.1759 0.044*
C18 0.1935 (2) 0.06478 (5) −0.2582 (2) 0.0382 (4)
H18A 0.1389 0.0533 −0.3642 0.046*
H18B 0.1822 0.0416 −0.1889 0.046*
C19 0.37848 (18) 0.07557 (5) −0.21480 (16) 0.0282 (3)
H19A 0.3959 0.0853 −0.3053 0.034*
H19B 0.4499 0.0487 −0.1689 0.034*
N20 0.46954 (16) 0.24080 (4) 0.31417 (15) 0.0329 (3)
H20 0.4794 0.2703 0.3303 0.039*
C21 0.55349 (19) 0.21573 (5) 0.24806 (17) 0.0308 (3)
H21 0.6315 0.2278 0.2129 0.037*
C22 0.50921 (17) 0.17099 (5) 0.23994 (15) 0.0250 (3)
C23 0.38834 (17) 0.16807 (5) 0.30492 (15) 0.0245 (3)
C24 0.29604 (18) 0.13280 (5) 0.33118 (16) 0.0281 (3)
H24 0.3062 0.1026 0.3015 0.034*
C25 0.19025 (18) 0.14242 (5) 0.40062 (17) 0.0320 (3)
H25 0.1275 0.1186 0.4183 0.038*
C26 0.17390 (19) 0.18680 (6) 0.44541 (17) 0.0335 (3)
H26 0.0999 0.1925 0.4925 0.040*
C27 0.26304 (18) 0.22218 (5) 0.42229 (17) 0.0321 (3)
H27 0.2531 0.2522 0.4540 0.039*
C28 0.36823 (18) 0.21257 (5) 0.35091 (16) 0.0277 (3)
C29 0.9782 (3) −0.02919 (8) 0.8839 (3) 0.0599 (5)
H29 0.9643 −0.0498 0.8039 0.072*
C30 0.8857 (3) 0.01069 (8) 0.8504 (3) 0.0570 (5)
C31 0.9101 (3) 0.03952 (7) 0.9693 (3) 0.0593 (6)
H31 0.8488 0.0672 0.9502 0.071*
C32 0.7658 (3) 0.02275 (12) 0.6900 (3) 0.0962 (10)
H32A 0.7930 0.0530 0.6647 0.144*
H32B 0.6505 0.0226 0.6819 0.144*
H32C 0.7760 0.0004 0.6190 0.144*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0335 (8) 0.0263 (7) 0.0256 (7) −0.0062 (6) 0.0131 (6) −0.0011 (5)
C2 0.0684 (12) 0.0257 (8) 0.0365 (9) −0.0030 (8) 0.0141 (8) 0.0047 (7)
C3 0.0532 (13) 0.0311 (10) 0.0395 (11) 0.0073 (9) 0.0150 (9) 0.0062 (8)
C4 0.0364 (8) 0.0354 (8) 0.0275 (7) 0.0046 (6) 0.0121 (6) 0.0042 (6)
C2' 0.0684 (12) 0.0257 (8) 0.0365 (9) −0.0030 (8) 0.0141 (8) 0.0047 (7)
C3' 0.0532 (13) 0.0311 (10) 0.0395 (11) 0.0073 (9) 0.0150 (9) 0.0062 (8)
C4' 0.0364 (8) 0.0354 (8) 0.0275 (7) 0.0046 (6) 0.0121 (6) 0.0042 (6)
C5 0.0276 (7) 0.0277 (7) 0.0219 (6) −0.0033 (5) 0.0092 (5) 0.0003 (5)
C6 0.0244 (7) 0.0276 (7) 0.0253 (7) −0.0020 (5) 0.0090 (5) −0.0002 (5)
N7 0.0248 (6) 0.0383 (7) 0.0209 (6) −0.0074 (5) 0.0061 (5) −0.0033 (5)
C8 0.0235 (7) 0.0280 (7) 0.0244 (7) 0.0007 (5) 0.0081 (5) 0.0002 (5)
C9 0.0217 (7) 0.0335 (8) 0.0307 (7) −0.0033 (6) 0.0091 (6) −0.0021 (6)
C10 0.0257 (7) 0.0316 (7) 0.0353 (8) 0.0004 (6) 0.0157 (6) 0.0027 (6)
C11 0.0299 (7) 0.0309 (7) 0.0257 (7) 0.0032 (6) 0.0128 (6) 0.0024 (6)
C12 0.0239 (7) 0.0261 (7) 0.0241 (7) 0.0009 (5) 0.0083 (5) −0.0008 (5)
C13 0.0208 (6) 0.0216 (6) 0.0255 (7) 0.0018 (5) 0.0086 (5) 0.0001 (5)
C14 0.0243 (7) 0.0229 (6) 0.0238 (7) 0.0006 (5) 0.0089 (5) 0.0003 (5)
C15 0.0254 (7) 0.0220 (6) 0.0242 (6) −0.0022 (5) 0.0097 (5) −0.0013 (5)
C16 0.0270 (7) 0.0252 (7) 0.0352 (8) −0.0001 (5) 0.0114 (6) 0.0004 (6)
C17 0.0257 (8) 0.0368 (8) 0.0448 (9) −0.0045 (6) 0.0110 (7) −0.0022 (7)
C18 0.0337 (8) 0.0326 (8) 0.0446 (9) −0.0087 (6) 0.0127 (7) −0.0072 (7)
C19 0.0308 (7) 0.0252 (7) 0.0276 (7) −0.0037 (6) 0.0111 (6) −0.0037 (5)
N20 0.0377 (7) 0.0210 (6) 0.0374 (7) −0.0013 (5) 0.0132 (6) 0.0010 (5)
C21 0.0318 (8) 0.0288 (7) 0.0303 (7) −0.0030 (6) 0.0115 (6) 0.0036 (6)
C22 0.0263 (7) 0.0263 (7) 0.0200 (6) −0.0027 (5) 0.0073 (5) 0.0017 (5)
C23 0.0245 (7) 0.0257 (7) 0.0192 (6) −0.0004 (5) 0.0050 (5) 0.0011 (5)
C24 0.0282 (7) 0.0281 (7) 0.0259 (7) −0.0031 (6) 0.0092 (6) −0.0014 (5)
C25 0.0270 (7) 0.0387 (8) 0.0289 (7) −0.0028 (6) 0.0104 (6) 0.0026 (6)
C26 0.0261 (7) 0.0452 (9) 0.0266 (7) 0.0063 (6) 0.0086 (6) 0.0002 (6)
C27 0.0298 (7) 0.0322 (8) 0.0280 (7) 0.0076 (6) 0.0058 (6) −0.0014 (6)
C28 0.0269 (7) 0.0259 (7) 0.0243 (7) 0.0014 (5) 0.0046 (6) 0.0018 (5)
C29 0.0650 (13) 0.0548 (12) 0.0731 (15) −0.0183 (10) 0.0420 (12) −0.0085 (10)
C30 0.0449 (11) 0.0646 (13) 0.0655 (13) −0.0117 (9) 0.0270 (10) 0.0147 (10)
C31 0.0563 (12) 0.0447 (11) 0.0901 (16) 0.0027 (9) 0.0436 (12) 0.0157 (11)
C32 0.0633 (15) 0.139 (3) 0.0742 (17) −0.0256 (16) 0.0172 (13) 0.0335 (17)

Geometric parameters (Å, º)

C1—C2' 1.536 (2) C14—C15 1.5013 (18)
C1—C2 1.536 (2) C15—C16 1.5376 (19)
C1—C5 1.5886 (19) C15—C19 1.5347 (19)
C1—C15 1.5711 (19) C16—C17 1.539 (2)
C1—H1 1.0000 C16—H16A 0.9900
C2—C3 1.492 (3) C16—H16B 0.9900
C2—H2A 0.9900 C17—C18 1.541 (2)
C2—H2B 0.9900 C17—H17A 0.9900
C2'—C3' 1.476 (4) C17—H17B 0.9900
C2'—H2C 0.9900 C18—C19 1.528 (2)
C2'—H2D 0.9900 C18—H18A 0.9900
C3—C4 1.524 (2) C18—H18B 0.9900
C3—H3A 0.9900 C19—H19A 0.9900
C3—H3B 0.9900 C19—H19B 0.9900
C3'—C4' 1.513 (4) N20—C21 1.374 (2)
C3'—H3C 0.9900 N20—C28 1.3670 (19)
C3'—H3D 0.9900 N20—H20 0.8800
C4—C5 1.561 (2) C21—C22 1.366 (2)
C4—H4A 0.9900 C21—H21 0.9500
C4—H4B 0.9900 C22—C23 1.4418 (19)
C4'—C5 1.561 (2) C23—C24 1.4032 (19)
C4'—H4C 0.9900 C23—C28 1.4182 (19)
C4'—H4D 0.9900 C24—C25 1.382 (2)
C5—C6 1.5025 (19) C24—H24 0.9500
C5—C22 1.510 (2) C25—C26 1.403 (2)
C6—N7 1.3775 (18) C25—H25 0.9500
C6—C14 1.3509 (19) C26—C27 1.375 (2)
N7—C8 1.3856 (18) C26—H26 0.9500
N7—H7 0.8800 C27—C28 1.392 (2)
C8—C9 1.390 (2) C27—H27 0.9500
C8—C13 1.4211 (19) C29—C30 1.386 (3)
C9—C10 1.383 (2) C29—C31i 1.378 (3)
C9—H9 0.9500 C29—H29 0.9500
C10—C11 1.399 (2) C30—C31 1.372 (3)
C10—H10 0.9500 C30—C32 1.505 (3)
C11—C12 1.385 (2) C31—C29i 1.378 (3)
C11—H11 0.9500 C31—H31 0.9500
C12—C13 1.3995 (19) C32—H32A 0.9800
C12—H12 0.9500 C32—H32B 0.9800
C13—C14 1.4356 (19) C32—H32C 0.9800
C2—C1—C15 116.07 (12) C12—C13—C14 135.45 (13)
C2—C1—C5 103.60 (12) C6—C14—C13 107.61 (12)
C2'—C1—C5 103.60 (12) C6—C14—C15 112.11 (12)
C2'—C1—C15 116.07 (12) C13—C14—C15 140.21 (12)
C5—C1—C15 107.79 (11) C1—C15—C14 100.99 (11)
C2—C1—H1 109.7 C1—C15—C16 110.34 (11)
C5—C1—H1 109.7 C1—C15—C19 114.89 (11)
C15—C1—H1 109.7 C14—C15—C16 113.66 (11)
C1—C2—C3 106.41 (14) C14—C15—C19 116.15 (11)
C1—C2—H2A 110.4 C16—C15—C19 101.26 (11)
C1—C2—H2B 110.4 C15—C16—C17 105.53 (11)
C3—C2—H2A 110.4 C15—C16—H16A 110.6
C3—C2—H2B 110.4 C17—C16—H16A 110.6
H2A—C2—H2B 108.6 C15—C16—H16B 110.6
C1—C2'—C3' 109.1 (3) C17—C16—H16B 110.6
C1—C2'—H2C 109.9 H16A—C16—H16B 108.8
C1—C2'—H2D 109.9 C16—C17—C18 105.90 (12)
C3'—C2'—H2C 109.9 C16—C17—H17A 110.6
C3'—C2'—H2D 109.9 C16—C17—H17B 110.6
H2C—C2'—H2D 108.3 C18—C17—H17A 110.6
C2—C3—C4 104.62 (15) C18—C17—H17B 110.6
C2—C3—H3A 110.8 H17A—C17—H17B 108.7
C2—C3—H3B 110.8 C17—C18—C19 105.40 (12)
C4—C3—H3A 110.8 C17—C18—H18A 110.7
C4—C3—H3B 110.8 C17—C18—H18B 110.7
H3A—C3—H3B 108.9 C19—C18—H18A 110.7
C2'—C3'—C4' 105.9 (2) C19—C18—H18B 110.7
C2'—C3'—H3C 110.5 H18A—C18—H18B 108.8
C2'—C3'—H3D 110.5 C15—C19—C18 104.54 (12)
C4'—C3'—H3C 110.5 C15—C19—H19A 110.8
C4'—C3'—H3D 110.5 C15—C19—H19B 110.8
H3C—C3'—H3D 108.7 C18—C19—H19A 110.8
C3—C4—C5 107.06 (13) C18—C19—H19B 110.8
C3—C4—H4A 110.3 H19A—C19—H19B 108.9
C3—C4—H4B 110.3 C21—N20—C28 109.01 (12)
C5—C4—H4A 110.3 C21—N20—H20 125.5
C5—C4—H4B 110.3 C28—N20—H20 125.5
H4A—C4—H4B 108.6 N20—C21—C22 110.53 (13)
C3'—C4'—C5 102.9 (3) N20—C21—H21 124.7
C3'—C4'—H4C 111.2 C22—C21—H21 124.7
C3'—C4'—H4D 111.2 C5—C22—C21 126.53 (13)
C5—C4'—H4C 111.2 C5—C22—C23 127.37 (12)
C5—C4'—H4D 111.2 C21—C22—C23 105.97 (13)
H4C—C4'—H4D 109.1 C22—C23—C24 134.96 (13)
C1—C5—C4 104.92 (11) C22—C23—C28 106.94 (12)
C1—C5—C4' 104.92 (11) C24—C23—C28 118.10 (13)
C1—C5—C6 98.91 (11) C23—C24—C25 119.36 (14)
C1—C5—C22 114.67 (11) C23—C24—H24 120.3
C4—C5—C6 113.69 (12) C25—C24—H24 120.3
C4'—C5—C6 113.69 (12) C24—C25—C26 121.09 (14)
C4—C5—C22 112.17 (11) C24—C25—H25 119.5
C4'—C5—C22 112.17 (11) C26—C25—H25 119.5
C6—C5—C22 111.68 (11) C25—C26—C27 121.17 (14)
C5—C6—N7 134.14 (12) C25—C26—H26 119.4
C5—C6—C14 115.07 (12) C27—C26—H26 119.4
N7—C6—C14 110.72 (12) C26—C27—C28 117.73 (14)
C6—N7—C8 107.70 (11) C26—C27—H27 121.1
C6—N7—H7 126.2 C28—C27—H27 121.1
C8—N7—H7 126.2 N20—C28—C23 107.55 (12)
N7—C8—C9 129.71 (13) N20—C28—C27 129.90 (14)
N7—C8—C13 108.23 (12) C23—C28—C27 122.54 (13)
C9—C8—C13 122.05 (13) C30i—C29—C31 121.5 (2)
C8—C9—C10 117.64 (13) C30—C29—H29 119.3
C8—C9—H9 121.2 C31i—C29—H29 119.3
C10—C9—H9 121.2 C29—C30—C31 117.2 (2)
C9—C10—C11 121.40 (13) C29—C30—C32 121.9 (2)
C9—C10—H10 119.3 C31—C30—C32 120.9 (2)
C11—C10—H10 119.3 C29—C31—C30i 121.3 (2)
C10—C11—C12 121.05 (13) C29i—C31—H31 119.3
C10—C11—H11 119.5 C30—C31—H31 119.3
C12—C11—H11 119.5 C30—C32—H32A 109.5
C11—C12—C13 119.06 (13) C30—C32—H32B 109.5
C11—C12—H12 120.5 C30—C32—H32C 109.5
C13—C12—H12 120.5 H32A—C32—H32B 109.5
C8—C13—C12 118.80 (12) H32A—C32—H32C 109.5
C8—C13—C14 105.74 (12) H32B—C32—H32C 109.5
C5—C1—C2—C3 32.92 (18) C6—N7—C8—C13 0.36 (16)
C15—C1—C2—C3 150.85 (15) N7—C8—C9—C10 −177.64 (14)
C5—C1—C2'—C3' −7.4 (4) C13—C8—C9—C10 1.1 (2)
C15—C1—C2'—C3' 110.5 (4) N7—C8—C13—C12 178.11 (12)
C2—C1—C5—C4 −15.51 (15) N7—C8—C13—C14 −0.65 (15)
C2—C1—C5—C6 102.06 (13) C9—C8—C13—C12 −0.9 (2)
C2—C1—C5—C22 −139.03 (13) C9—C8—C13—C14 −179.63 (13)
C2'—C1—C5—C4' −15.51 (15) C8—C9—C10—C11 −0.5 (2)
C2'—C1—C5—C6 102.06 (13) C9—C10—C11—C12 −0.4 (2)
C2'—C1—C5—C22 −139.03 (13) C10—C11—C12—C13 0.6 (2)
C15—C1—C5—C4 −139.04 (12) C11—C12—C13—C8 0.0 (2)
C15—C1—C5—C4' −139.04 (12) C11—C12—C13—C14 178.27 (14)
C15—C1—C5—C6 −21.48 (14) C8—C13—C14—C6 0.70 (15)
C15—C1—C5—C22 97.44 (13) C8—C13—C14—C15 177.17 (16)
C2—C1—C15—C14 −94.01 (15) C12—C13—C14—C6 −177.75 (15)
C2—C1—C15—C16 145.46 (14) C12—C13—C14—C15 −1.3 (3)
C2—C1—C15—C19 31.79 (18) C6—C14—C15—C1 −13.29 (15)
C2'—C1—C15—C14 −94.01 (15) C6—C14—C15—C16 104.85 (14)
C2'—C1—C15—C16 145.46 (14) C6—C14—C15—C19 −138.25 (13)
C2'—C1—C15—C19 31.79 (18) C13—C14—C15—C1 170.34 (16)
C5—C1—C15—C14 21.58 (14) C13—C14—C15—C16 −71.5 (2)
C5—C1—C15—C16 −98.95 (13) C13—C14—C15—C19 45.4 (2)
C5—C1—C15—C19 147.39 (12) C1—C15—C16—C17 −85.04 (14)
C1—C2—C3—C4 −37.5 (2) C14—C15—C16—C17 162.36 (12)
C1—C2'—C3'—C4' 28.4 (7) C19—C15—C16—C17 37.06 (14)
C2—C3—C4—C5 26.9 (2) C1—C15—C19—C18 77.39 (15)
C2'—C3'—C4'—C5 −37.3 (6) C14—C15—C19—C18 −165.10 (12)
C3—C4—C5—C1 −6.50 (17) C16—C15—C19—C18 −41.49 (14)
C3—C4—C5—C6 −113.49 (15) C15—C16—C17—C18 −18.99 (16)
C3—C4—C5—C22 118.60 (15) C16—C17—C18—C19 −6.91 (17)
C3'—C4'—C5—C1 32.1 (4) C17—C18—C19—C15 30.33 (16)
C3'—C4'—C5—C6 −74.9 (4) C28—N20—C21—C22 0.09 (17)
C3'—C4'—C5—C22 157.2 (4) C21—N20—C28—C23 −0.48 (16)
C1—C5—C6—N7 −169.36 (16) C21—N20—C28—C27 178.45 (15)
C1—C5—C6—C14 14.02 (15) N20—C21—C22—C5 −175.78 (13)
C4—C5—C6—N7 −58.7 (2) N20—C21—C22—C23 0.33 (16)
C4—C5—C6—C14 124.72 (14) C5—C22—C23—C24 −3.6 (3)
C4'—C5—C6—N7 −58.7 (2) C5—C22—C23—C28 175.45 (13)
C4'—C5—C6—C14 124.72 (14) C21—C22—C23—C24 −179.71 (15)
C22—C5—C6—N7 69.5 (2) C21—C22—C23—C28 −0.61 (15)
C22—C5—C6—C14 −107.11 (14) C22—C23—C24—C25 178.81 (15)
C1—C5—C22—C21 −132.41 (15) C28—C23—C24—C25 −0.2 (2)
C1—C5—C22—C23 52.30 (18) C22—C23—C28—N20 0.67 (15)
C4—C5—C22—C21 108.04 (16) C22—C23—C28—C27 −178.36 (13)
C4—C5—C22—C23 −67.25 (18) C24—C23—C28—N20 179.96 (12)
C4'—C5—C22—C21 108.04 (16) C24—C23—C28—C27 0.9 (2)
C4'—C5—C22—C23 −67.25 (18) C23—C24—C25—C26 −0.1 (2)
C6—C5—C22—C21 −20.9 (2) C24—C25—C26—C27 −0.3 (2)
C6—C5—C22—C23 163.78 (13) C25—C26—C27—C28 0.9 (2)
C5—C6—N7—C8 −176.63 (15) C26—C27—C28—N20 179.94 (14)
C14—C6—N7—C8 0.10 (16) C26—C27—C28—C23 −1.3 (2)
C5—C6—C14—C13 176.90 (11) C31i—C29—C30—C31 0.1 (3)
C5—C6—C14—C15 −0.66 (17) C31i—C29—C30—C32 178.78 (19)
N7—C6—C14—C13 −0.51 (16) C29—C30—C31—C29i −0.1 (3)
N7—C6—C14—C15 −178.07 (12) C32—C30—C31—C29i −178.80 (19)
C6—N7—C8—C9 179.23 (15)

Symmetry code: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N20/C21–C23/C28, C23–C28, C6/N7/C8/C13/C14 and C8–C13, respectively.

D—H···A D—H H···A D···A D—H···A
N7—H7···C26ii 0.88 2.66 3.493 (2) 157
C11—H11···Cg1iii 0.95 2.82 3.5419 (16) 133
C12—H12···Cg2iii 0.95 2.70 3.4652 (16) 138
N20—H20···Cg3iv 0.88 2.82 3.5654 (14) 144
C21—H21···Cg4iv 0.95 2.92 3.4970 (17) 120

Symmetry codes: (ii) x+1, y, z; (iii) x, y, z−1; (iv) x, −y−1/2, z−1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Landi, L., Prata, C., Berridge, M. V., Grasso, C., Fiebig, H.-H., Kelter, G., Burger, A. M. & Kunkel, M. W. (2008). J. Med. Chem. 51, 4563–4570. [DOI] [PMC free article] [PubMed]
  3. Banerji, J., Chatterjee, A., Manna, S., Pascard, C., Prange, T. & Shoolery, J. N. (1981). Heterocycles, 15, 325–336.
  4. Banerji, J., Mustafi, R. & Shoolery, J. N. (1983). Heterocycles, 20, 1355–1362.
  5. Bergman, J., Norrby, P.-O., Tilstam, U. & Venemalm, L. (1989). Tetrahedron, 45, 5549–5564.
  6. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Gu, X.-H., Wan, X.-Z. & Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569–572. [DOI] [PubMed]
  9. Guzei, I. A., Spencer, L. C., Codner, E. & Boehm, J. M. (2012). Acta Cryst. E68, o1–o2. [DOI] [PMC free article] [PubMed]
  10. Lee, C.-H., Yao, C.-F., Huang, S.-M., Ko, S., Tan, Y.-H., Lee-Chen, G.-J. & Wang, Y.-C. (2008). Cancer, 113, 815–825. [DOI] [PubMed]
  11. Maciejewska, D., Szpakowska, I., Wolska, I., Niemyjska, M., Mascini, M. & Maj-Żurawska, M. (2006). Bioelectrochemistry, 69, 1–9. [DOI] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. McNulty, J. & McLeod, D. (2011). Synlett, 5, 717–721.
  14. Noland, W. E., Walhstrom, M. J., Konkel, M. J., Brigham, M. E., Trowbridge, A. G., Konkel, L. M. C., Gourneau, R. P., Scholten, C. A., Lee, N. H., Condoluci, J. J., Gac, T. S., Pour, M. M. & Radford, P. M. (1993). J. Heterocycl. Chem. 30, 81–91.
  15. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  16. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Shiri, M., Zolfigol, M. A., Kruger, H. G. & Tanbakouchian, Z. (2010). Chem. Rev. 110, 2250–2293. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Zhang, W., Liu, Z., Li, S., Yang, T., Zhang, Q., Ma, L., Tian, X., Zhang, H., Huang, C., Zhang, S., Ju, J., Shen, Y. & Zhang, C. (2012). Org. Lett. 14, 3364–3367. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015007422/su5116sup1.cif

e-71-00516-sup1.cif (779.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007422/su5116Isup2.hkl

e-71-00516-Isup2.hkl (284.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007422/su5116Isup3.cml

CCDC reference: 1059822

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES