Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 15;71(Pt 5):o311–o312. doi: 10.1107/S2056989015007173

Crystal structure of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene

Jun Du a, Graeme J Moxey a,b,*
PMCID: PMC4420069  PMID: 25995921

Abstract

In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, π–π inter­actions generate supra­molecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.

Keywords: crystal structure, tri­alkyl­silyl­acetyl­ene, nitro­arene, π–π inter­actions

Related literature  

For the syntheses of aryl­alkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilylation of the related 1-nitro-4-(tri­methyl­silylethyn­yl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a ,b , 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).graphic file with name e-71-0o311-scheme1.jpg

Experimental  

Crystal data  

  • C15H15NO2Si

  • M r = 269.37

  • Triclinic, Inline graphic

  • a = 6.9679 (9) Å

  • b = 9.2425 (12) Å

  • c = 11.799 (1) Å

  • α = 100.242 (9)°

  • β = 99.698 (9)°

  • γ = 107.127 (12)°

  • V = 694.62 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 150 K

  • 0.23 × 0.07 × 0.04 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] T min = 0.986, T max = 0.996

  • 4695 measured reflections

  • 3112 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.114

  • S = 1.07

  • 3112 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007173/xu5846sup1.cif

e-71-0o311-sup1.cif (173.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007173/xu5846Isup2.hkl

e-71-0o311-Isup2.hkl (170.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007173/xu5846Isup3.cml

. DOI: 10.1107/S2056989015007173/xu5846fig1.tif

Mol­ecular structure of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene, with displacement ellipsoids set at the 40% probability level.

1 13 . DOI: 10.1107/S2056989015007173/xu5846fig2.tif

Atom numbering scheme of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene for 1H and 13C NMR assignments.

CCDC reference: 1058939

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

supplementary crystallographic information

S1. Synthesis and crystallization

1-Iodo-4-nitro­naphthalene (1.196 g, 4.00 mmol) was added to tri­ethyl­amine (30 mL) and the mixture de­oxy­genated and charged with nitro­gen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and tri­methyl­silyl­acetyl­ene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with tri­ethyl­amine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the eluate afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR (δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a di­chloro­methane solution.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized below.

Figures

Fig. 1.

Fig. 1.

Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.

Fig. 2.

Fig. 2.

Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for 1H and 13C NMR assignments.

Crystal data

C15H15NO2Si Z = 2
Mr = 269.37 F(000) = 284
Triclinic, P1 Dx = 1.288 Mg m3
a = 6.9679 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2425 (12) Å Cell parameters from 1967 reflections
c = 11.799 (1) Å θ = 2.6–28.3°
α = 100.242 (9)° µ = 0.17 mm1
β = 99.698 (9)° T = 150 K
γ = 107.127 (12)° Needle, yellow
V = 694.62 (15) Å3 0.23 × 0.07 × 0.04 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer 3112 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2621 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 8.1297 pixels mm-1 θmax = 29.2°, θmin = 1.8°
ω scans h = −6→9
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] k = −11→12
Tmin = 0.986, Tmax = 0.996 l = −15→15
4695 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3469P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3112 reflections Δρmax = 0.36 e Å3
175 parameters Δρmin = −0.22 e Å3
0 restraints

Special details

Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2485 (3) 0.6318 (2) 0.44838 (15) 0.0204 (4)
C2 0.1929 (2) 0.4663 (2) 0.41137 (15) 0.0188 (4)
C3 0.1112 (3) 0.3754 (2) 0.29263 (16) 0.0247 (4)
H3 0.0875 0.4239 0.2316 0.030*
C4 0.0675 (3) 0.2178 (2) 0.26757 (17) 0.0293 (4)
H4 0.0147 0.1606 0.1893 0.035*
C5 0.1001 (3) 0.1400 (2) 0.35659 (18) 0.0293 (4)
H5 0.0661 0.0321 0.3376 0.035*
C6 0.1819 (3) 0.2230 (2) 0.47120 (17) 0.0234 (4)
H6 0.2048 0.1711 0.5301 0.028*
C7 0.2324 (2) 0.3874 (2) 0.50191 (15) 0.0182 (4)
C8 0.3257 (3) 0.4749 (2) 0.62159 (15) 0.0187 (4)
C9 0.3745 (3) 0.6352 (2) 0.65052 (15) 0.0220 (4)
H9 0.4329 0.6912 0.7288 0.026*
C10 0.3369 (3) 0.7131 (2) 0.56329 (16) 0.0225 (4)
H10 0.3720 0.8211 0.5832 0.027*
C11 0.3756 (3) 0.3974 (2) 0.71220 (15) 0.0215 (4)
C12 0.4216 (3) 0.3354 (2) 0.78877 (16) 0.0235 (4)
C13 0.4757 (3) 0.0381 (2) 0.83030 (17) 0.0300 (4)
H13A 0.3530 −0.0142 0.7682 0.045*
H13B 0.4823 −0.0237 0.8873 0.045*
H13C 0.5949 0.0523 0.7973 0.045*
C14 0.2518 (3) 0.2089 (3) 0.97894 (19) 0.0361 (5)
H14A 0.1234 0.1699 0.9203 0.054*
H14B 0.2647 0.3083 1.0269 0.054*
H14C 0.2547 0.1369 1.0281 0.054*
C15 0.7217 (3) 0.3443 (2) 1.00937 (18) 0.0327 (5)
H15A 0.7507 0.2860 1.0658 0.049*
H15B 0.7161 0.4421 1.0501 0.049*
H15C 0.8287 0.3633 0.9667 0.049*
N1 0.2165 (3) 0.7285 (2) 0.36481 (15) 0.0275 (4)
O1 0.0903 (2) 0.6698 (2) 0.27072 (14) 0.0437 (4)
O2 0.3213 (3) 0.86743 (19) 0.39546 (15) 0.0532 (5)
Si1 0.47002 (8) 0.23164 (6) 0.90416 (4) 0.02062 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0176 (8) 0.0279 (10) 0.0240 (9) 0.0126 (7) 0.0093 (7) 0.0138 (7)
C2 0.0125 (7) 0.0262 (9) 0.0212 (8) 0.0085 (7) 0.0063 (7) 0.0086 (7)
C3 0.0193 (9) 0.0349 (11) 0.0191 (9) 0.0081 (8) 0.0036 (7) 0.0076 (8)
C4 0.0228 (9) 0.0372 (12) 0.0213 (9) 0.0066 (8) 0.0030 (8) −0.0012 (8)
C5 0.0256 (10) 0.0240 (10) 0.0350 (11) 0.0071 (8) 0.0065 (8) 0.0016 (8)
C6 0.0211 (9) 0.0239 (10) 0.0280 (9) 0.0093 (7) 0.0067 (8) 0.0093 (8)
C7 0.0123 (7) 0.0238 (9) 0.0212 (8) 0.0077 (7) 0.0064 (7) 0.0074 (7)
C8 0.0160 (8) 0.0264 (9) 0.0199 (8) 0.0114 (7) 0.0078 (7) 0.0100 (7)
C9 0.0217 (9) 0.0262 (10) 0.0193 (8) 0.0103 (7) 0.0065 (7) 0.0033 (7)
C10 0.0233 (9) 0.0229 (9) 0.0267 (9) 0.0124 (8) 0.0105 (8) 0.0073 (7)
C11 0.0196 (8) 0.0267 (10) 0.0208 (9) 0.0105 (7) 0.0070 (7) 0.0054 (7)
C12 0.0248 (9) 0.0274 (10) 0.0217 (9) 0.0110 (8) 0.0078 (7) 0.0083 (7)
C13 0.0396 (11) 0.0241 (10) 0.0272 (10) 0.0113 (9) 0.0099 (9) 0.0058 (8)
C14 0.0410 (12) 0.0438 (13) 0.0373 (11) 0.0215 (10) 0.0217 (10) 0.0197 (10)
C15 0.0364 (11) 0.0296 (11) 0.0282 (10) 0.0100 (9) −0.0004 (9) 0.0066 (8)
N1 0.0294 (9) 0.0352 (10) 0.0313 (9) 0.0193 (8) 0.0158 (7) 0.0186 (8)
O1 0.0390 (9) 0.0558 (11) 0.0400 (9) 0.0167 (8) −0.0007 (7) 0.0290 (8)
O2 0.0889 (14) 0.0287 (9) 0.0447 (10) 0.0188 (9) 0.0129 (9) 0.0198 (8)
Si1 0.0252 (3) 0.0222 (3) 0.0169 (2) 0.0097 (2) 0.00518 (19) 0.00766 (19)

Geometric parameters (Å, º)

C1—C2 1.427 (3) C10—H10 0.9300
C1—C10 1.366 (3) C11—C12 1.201 (2)
C1—N1 1.476 (2) C12—Si1 1.8403 (19)
C2—C3 1.422 (3) C13—H13A 0.9600
C2—C7 1.430 (2) C13—H13B 0.9600
C3—H3 0.9300 C13—H13C 0.9600
C3—C4 1.363 (3) C13—Si1 1.860 (2)
C4—H4 0.9300 C14—H14A 0.9600
C4—C5 1.399 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
C5—C6 1.362 (3) C14—Si1 1.862 (2)
C6—H6 0.9300 C15—H15A 0.9600
C6—C7 1.418 (3) C15—H15B 0.9600
C7—C8 1.430 (2) C15—H15C 0.9600
C8—C9 1.382 (3) C15—Si1 1.853 (2)
C8—C11 1.439 (2) N1—O1 1.215 (2)
C9—H9 0.9300 N1—O2 1.228 (2)
C9—C10 1.390 (2)
C2—C1—N1 122.38 (16) C12—C11—C8 178.5 (2)
C10—C1—C2 122.82 (16) C11—C12—Si1 175.42 (17)
C10—C1—N1 114.80 (16) H13A—C13—H13B 109.5
C1—C2—C7 116.38 (15) H13A—C13—H13C 109.5
C3—C2—C1 125.72 (16) H13B—C13—H13C 109.5
C3—C2—C7 117.84 (17) Si1—C13—H13A 109.5
C2—C3—H3 119.7 Si1—C13—H13B 109.5
C4—C3—C2 120.51 (17) Si1—C13—H13C 109.5
C4—C3—H3 119.7 H14A—C14—H14B 109.5
C3—C4—H4 119.2 H14A—C14—H14C 109.5
C3—C4—C5 121.65 (18) H14B—C14—H14C 109.5
C5—C4—H4 119.2 Si1—C14—H14A 109.5
C4—C5—H5 120.1 Si1—C14—H14B 109.5
C6—C5—C4 119.74 (18) Si1—C14—H14C 109.5
C6—C5—H5 120.1 H15A—C15—H15B 109.5
C5—C6—H6 119.6 H15A—C15—H15C 109.5
C5—C6—C7 120.89 (17) H15B—C15—H15C 109.5
C7—C6—H6 119.6 Si1—C15—H15A 109.5
C2—C7—C8 119.87 (16) Si1—C15—H15B 109.5
C6—C7—C2 119.33 (16) Si1—C15—H15C 109.5
C6—C7—C8 120.79 (16) O1—N1—C1 119.96 (17)
C7—C8—C11 120.25 (16) O1—N1—O2 123.02 (17)
C9—C8—C7 120.30 (16) O2—N1—C1 117.02 (17)
C9—C8—C11 119.42 (16) C12—Si1—C13 107.97 (9)
C8—C9—H9 119.8 C12—Si1—C14 106.63 (9)
C8—C9—C10 120.33 (16) C12—Si1—C15 109.92 (9)
C10—C9—H9 119.8 C13—Si1—C14 110.88 (10)
C1—C10—C9 120.29 (17) C15—Si1—C13 109.63 (10)
C1—C10—H10 119.9 C15—Si1—C14 111.70 (10)
C9—C10—H10 119.9
C1—C2—C3—C4 178.69 (16) C5—C6—C7—C8 −177.53 (16)
C1—C2—C7—C6 −179.69 (14) C6—C7—C8—C9 179.94 (15)
C1—C2—C7—C8 −0.9 (2) C6—C7—C8—C11 1.9 (2)
C2—C1—C10—C9 −0.7 (3) C7—C2—C3—C4 1.7 (2)
C2—C1—N1—O1 21.6 (2) C7—C8—C9—C10 −1.2 (2)
C2—C1—N1—O2 −158.72 (17) C8—C9—C10—C1 0.9 (3)
C2—C3—C4—C5 0.2 (3) C10—C1—C2—C3 −176.32 (16)
C2—C7—C8—C9 1.2 (2) C10—C1—C2—C7 0.7 (2)
C2—C7—C8—C11 −176.86 (14) C10—C1—N1—O1 −158.99 (17)
C3—C2—C7—C6 −2.4 (2) C10—C1—N1—O2 20.7 (2)
C3—C2—C7—C8 176.36 (15) C11—C8—C9—C10 176.88 (15)
C3—C4—C5—C6 −1.5 (3) N1—C1—C2—C3 3.1 (3)
C4—C5—C6—C7 0.7 (3) N1—C1—C2—C7 −179.89 (14)
C5—C6—C7—C2 1.2 (2) N1—C1—C10—C9 179.83 (14)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5846).

References

  1. Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118.
  5. Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377–2385. [DOI] [PubMed]
  6. McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.
  7. McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33–40.
  8. McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem. 519, 229–235.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Squadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231–235. [DOI] [PubMed]
  12. Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007173/xu5846sup1.cif

e-71-0o311-sup1.cif (173.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007173/xu5846Isup2.hkl

e-71-0o311-Isup2.hkl (170.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007173/xu5846Isup3.cml

. DOI: 10.1107/S2056989015007173/xu5846fig1.tif

Mol­ecular structure of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene, with displacement ellipsoids set at the 40% probability level.

1 13 . DOI: 10.1107/S2056989015007173/xu5846fig2.tif

Atom numbering scheme of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene for 1H and 13C NMR assignments.

CCDC reference: 1058939

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES