Abstract
In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, π–π interactions generate supramolecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.
Keywords: crystal structure, trialkylsilylacetylene, nitroarene, π–π interactions
Related literature
For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980 ▸). For desilylation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a
▸,b
▸, 2003 ▸); Garcia et al. (2002 ▸). For related structures, see: Squadrito et al. (1990 ▸); Khan et al. (2004 ▸).
Experimental
Crystal data
C15H15NO2Si
M r = 269.37
Triclinic,
a = 6.9679 (9) Å
b = 9.2425 (12) Å
c = 11.799 (1) Å
α = 100.242 (9)°
β = 99.698 (9)°
γ = 107.127 (12)°
V = 694.62 (15) Å3
Z = 2
Mo Kα radiation
μ = 0.17 mm−1
T = 150 K
0.23 × 0.07 × 0.04 mm
Data collection
Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014 ▸), based on expressions derived by Clark & Reid (1995 ▸)] T min = 0.986, T max = 0.996
4695 measured reflections
3112 independent reflections
2621 reflections with I > 2σ(I)
R int = 0.021
Refinement
R[F 2 > 2σ(F 2)] = 0.044
wR(F 2) = 0.114
S = 1.07
3112 reflections
175 parameters
H-atom parameters constrained
Δρmax = 0.36 e Å−3
Δρmin = −0.23 e Å−3
Data collection: CrysAlis PRO (Agilent, 2014 ▸); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015 ▸); molecular graphics: OLEX2 (Dolomanov et al., 2009 ▸); software used to prepare material for publication: OLEX2.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007173/xu5846sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007173/xu5846Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015007173/xu5846Isup3.cml
. DOI: 10.1107/S2056989015007173/xu5846fig1.tif
Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.
1 13 . DOI: 10.1107/S2056989015007173/xu5846fig2.tif
Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for 1H and 13C NMR assignments.
CCDC reference: 1058939
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.
supplementary crystallographic information
S1. Synthesis and crystallization
1-Iodo-4-nitronaphthalene (1.196 g, 4.00 mmol) was added to triethylamine (30 mL) and the mixture deoxygenated and charged with nitrogen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and trimethylsilylacetylene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with triethylamine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the eluate afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR (δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a dichloromethane solution.
S2. Refinement
Crystal data, data collection and structure refinement details are summarized below.
Figures
Fig. 1.

Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.
Fig. 2.
Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for 1H and 13C NMR assignments.
Crystal data
| C15H15NO2Si | Z = 2 |
| Mr = 269.37 | F(000) = 284 |
| Triclinic, P1 | Dx = 1.288 Mg m−3 |
| a = 6.9679 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.2425 (12) Å | Cell parameters from 1967 reflections |
| c = 11.799 (1) Å | θ = 2.6–28.3° |
| α = 100.242 (9)° | µ = 0.17 mm−1 |
| β = 99.698 (9)° | T = 150 K |
| γ = 107.127 (12)° | Needle, yellow |
| V = 694.62 (15) Å3 | 0.23 × 0.07 × 0.04 mm |
Data collection
| Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer | 3112 independent reflections |
| Radiation source: SuperNova (Mo) X-ray Source | 2621 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.021 |
| Detector resolution: 8.1297 pixels mm-1 | θmax = 29.2°, θmin = 1.8° |
| ω scans | h = −6→9 |
| Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | k = −11→12 |
| Tmin = 0.986, Tmax = 0.996 | l = −15→15 |
| 4695 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
| wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3469P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max < 0.001 |
| 3112 reflections | Δρmax = 0.36 e Å−3 |
| 175 parameters | Δρmin = −0.22 e Å−3 |
| 0 restraints |
Special details
| Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.2485 (3) | 0.6318 (2) | 0.44838 (15) | 0.0204 (4) | |
| C2 | 0.1929 (2) | 0.4663 (2) | 0.41137 (15) | 0.0188 (4) | |
| C3 | 0.1112 (3) | 0.3754 (2) | 0.29263 (16) | 0.0247 (4) | |
| H3 | 0.0875 | 0.4239 | 0.2316 | 0.030* | |
| C4 | 0.0675 (3) | 0.2178 (2) | 0.26757 (17) | 0.0293 (4) | |
| H4 | 0.0147 | 0.1606 | 0.1893 | 0.035* | |
| C5 | 0.1001 (3) | 0.1400 (2) | 0.35659 (18) | 0.0293 (4) | |
| H5 | 0.0661 | 0.0321 | 0.3376 | 0.035* | |
| C6 | 0.1819 (3) | 0.2230 (2) | 0.47120 (17) | 0.0234 (4) | |
| H6 | 0.2048 | 0.1711 | 0.5301 | 0.028* | |
| C7 | 0.2324 (2) | 0.3874 (2) | 0.50191 (15) | 0.0182 (4) | |
| C8 | 0.3257 (3) | 0.4749 (2) | 0.62159 (15) | 0.0187 (4) | |
| C9 | 0.3745 (3) | 0.6352 (2) | 0.65052 (15) | 0.0220 (4) | |
| H9 | 0.4329 | 0.6912 | 0.7288 | 0.026* | |
| C10 | 0.3369 (3) | 0.7131 (2) | 0.56329 (16) | 0.0225 (4) | |
| H10 | 0.3720 | 0.8211 | 0.5832 | 0.027* | |
| C11 | 0.3756 (3) | 0.3974 (2) | 0.71220 (15) | 0.0215 (4) | |
| C12 | 0.4216 (3) | 0.3354 (2) | 0.78877 (16) | 0.0235 (4) | |
| C13 | 0.4757 (3) | 0.0381 (2) | 0.83030 (17) | 0.0300 (4) | |
| H13A | 0.3530 | −0.0142 | 0.7682 | 0.045* | |
| H13B | 0.4823 | −0.0237 | 0.8873 | 0.045* | |
| H13C | 0.5949 | 0.0523 | 0.7973 | 0.045* | |
| C14 | 0.2518 (3) | 0.2089 (3) | 0.97894 (19) | 0.0361 (5) | |
| H14A | 0.1234 | 0.1699 | 0.9203 | 0.054* | |
| H14B | 0.2647 | 0.3083 | 1.0269 | 0.054* | |
| H14C | 0.2547 | 0.1369 | 1.0281 | 0.054* | |
| C15 | 0.7217 (3) | 0.3443 (2) | 1.00937 (18) | 0.0327 (5) | |
| H15A | 0.7507 | 0.2860 | 1.0658 | 0.049* | |
| H15B | 0.7161 | 0.4421 | 1.0501 | 0.049* | |
| H15C | 0.8287 | 0.3633 | 0.9667 | 0.049* | |
| N1 | 0.2165 (3) | 0.7285 (2) | 0.36481 (15) | 0.0275 (4) | |
| O1 | 0.0903 (2) | 0.6698 (2) | 0.27072 (14) | 0.0437 (4) | |
| O2 | 0.3213 (3) | 0.86743 (19) | 0.39546 (15) | 0.0532 (5) | |
| Si1 | 0.47002 (8) | 0.23164 (6) | 0.90416 (4) | 0.02062 (14) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0176 (8) | 0.0279 (10) | 0.0240 (9) | 0.0126 (7) | 0.0093 (7) | 0.0138 (7) |
| C2 | 0.0125 (7) | 0.0262 (9) | 0.0212 (8) | 0.0085 (7) | 0.0063 (7) | 0.0086 (7) |
| C3 | 0.0193 (9) | 0.0349 (11) | 0.0191 (9) | 0.0081 (8) | 0.0036 (7) | 0.0076 (8) |
| C4 | 0.0228 (9) | 0.0372 (12) | 0.0213 (9) | 0.0066 (8) | 0.0030 (8) | −0.0012 (8) |
| C5 | 0.0256 (10) | 0.0240 (10) | 0.0350 (11) | 0.0071 (8) | 0.0065 (8) | 0.0016 (8) |
| C6 | 0.0211 (9) | 0.0239 (10) | 0.0280 (9) | 0.0093 (7) | 0.0067 (8) | 0.0093 (8) |
| C7 | 0.0123 (7) | 0.0238 (9) | 0.0212 (8) | 0.0077 (7) | 0.0064 (7) | 0.0074 (7) |
| C8 | 0.0160 (8) | 0.0264 (9) | 0.0199 (8) | 0.0114 (7) | 0.0078 (7) | 0.0100 (7) |
| C9 | 0.0217 (9) | 0.0262 (10) | 0.0193 (8) | 0.0103 (7) | 0.0065 (7) | 0.0033 (7) |
| C10 | 0.0233 (9) | 0.0229 (9) | 0.0267 (9) | 0.0124 (8) | 0.0105 (8) | 0.0073 (7) |
| C11 | 0.0196 (8) | 0.0267 (10) | 0.0208 (9) | 0.0105 (7) | 0.0070 (7) | 0.0054 (7) |
| C12 | 0.0248 (9) | 0.0274 (10) | 0.0217 (9) | 0.0110 (8) | 0.0078 (7) | 0.0083 (7) |
| C13 | 0.0396 (11) | 0.0241 (10) | 0.0272 (10) | 0.0113 (9) | 0.0099 (9) | 0.0058 (8) |
| C14 | 0.0410 (12) | 0.0438 (13) | 0.0373 (11) | 0.0215 (10) | 0.0217 (10) | 0.0197 (10) |
| C15 | 0.0364 (11) | 0.0296 (11) | 0.0282 (10) | 0.0100 (9) | −0.0004 (9) | 0.0066 (8) |
| N1 | 0.0294 (9) | 0.0352 (10) | 0.0313 (9) | 0.0193 (8) | 0.0158 (7) | 0.0186 (8) |
| O1 | 0.0390 (9) | 0.0558 (11) | 0.0400 (9) | 0.0167 (8) | −0.0007 (7) | 0.0290 (8) |
| O2 | 0.0889 (14) | 0.0287 (9) | 0.0447 (10) | 0.0188 (9) | 0.0129 (9) | 0.0198 (8) |
| Si1 | 0.0252 (3) | 0.0222 (3) | 0.0169 (2) | 0.0097 (2) | 0.00518 (19) | 0.00766 (19) |
Geometric parameters (Å, º)
| C1—C2 | 1.427 (3) | C10—H10 | 0.9300 |
| C1—C10 | 1.366 (3) | C11—C12 | 1.201 (2) |
| C1—N1 | 1.476 (2) | C12—Si1 | 1.8403 (19) |
| C2—C3 | 1.422 (3) | C13—H13A | 0.9600 |
| C2—C7 | 1.430 (2) | C13—H13B | 0.9600 |
| C3—H3 | 0.9300 | C13—H13C | 0.9600 |
| C3—C4 | 1.363 (3) | C13—Si1 | 1.860 (2) |
| C4—H4 | 0.9300 | C14—H14A | 0.9600 |
| C4—C5 | 1.399 (3) | C14—H14B | 0.9600 |
| C5—H5 | 0.9300 | C14—H14C | 0.9600 |
| C5—C6 | 1.362 (3) | C14—Si1 | 1.862 (2) |
| C6—H6 | 0.9300 | C15—H15A | 0.9600 |
| C6—C7 | 1.418 (3) | C15—H15B | 0.9600 |
| C7—C8 | 1.430 (2) | C15—H15C | 0.9600 |
| C8—C9 | 1.382 (3) | C15—Si1 | 1.853 (2) |
| C8—C11 | 1.439 (2) | N1—O1 | 1.215 (2) |
| C9—H9 | 0.9300 | N1—O2 | 1.228 (2) |
| C9—C10 | 1.390 (2) | ||
| C2—C1—N1 | 122.38 (16) | C12—C11—C8 | 178.5 (2) |
| C10—C1—C2 | 122.82 (16) | C11—C12—Si1 | 175.42 (17) |
| C10—C1—N1 | 114.80 (16) | H13A—C13—H13B | 109.5 |
| C1—C2—C7 | 116.38 (15) | H13A—C13—H13C | 109.5 |
| C3—C2—C1 | 125.72 (16) | H13B—C13—H13C | 109.5 |
| C3—C2—C7 | 117.84 (17) | Si1—C13—H13A | 109.5 |
| C2—C3—H3 | 119.7 | Si1—C13—H13B | 109.5 |
| C4—C3—C2 | 120.51 (17) | Si1—C13—H13C | 109.5 |
| C4—C3—H3 | 119.7 | H14A—C14—H14B | 109.5 |
| C3—C4—H4 | 119.2 | H14A—C14—H14C | 109.5 |
| C3—C4—C5 | 121.65 (18) | H14B—C14—H14C | 109.5 |
| C5—C4—H4 | 119.2 | Si1—C14—H14A | 109.5 |
| C4—C5—H5 | 120.1 | Si1—C14—H14B | 109.5 |
| C6—C5—C4 | 119.74 (18) | Si1—C14—H14C | 109.5 |
| C6—C5—H5 | 120.1 | H15A—C15—H15B | 109.5 |
| C5—C6—H6 | 119.6 | H15A—C15—H15C | 109.5 |
| C5—C6—C7 | 120.89 (17) | H15B—C15—H15C | 109.5 |
| C7—C6—H6 | 119.6 | Si1—C15—H15A | 109.5 |
| C2—C7—C8 | 119.87 (16) | Si1—C15—H15B | 109.5 |
| C6—C7—C2 | 119.33 (16) | Si1—C15—H15C | 109.5 |
| C6—C7—C8 | 120.79 (16) | O1—N1—C1 | 119.96 (17) |
| C7—C8—C11 | 120.25 (16) | O1—N1—O2 | 123.02 (17) |
| C9—C8—C7 | 120.30 (16) | O2—N1—C1 | 117.02 (17) |
| C9—C8—C11 | 119.42 (16) | C12—Si1—C13 | 107.97 (9) |
| C8—C9—H9 | 119.8 | C12—Si1—C14 | 106.63 (9) |
| C8—C9—C10 | 120.33 (16) | C12—Si1—C15 | 109.92 (9) |
| C10—C9—H9 | 119.8 | C13—Si1—C14 | 110.88 (10) |
| C1—C10—C9 | 120.29 (17) | C15—Si1—C13 | 109.63 (10) |
| C1—C10—H10 | 119.9 | C15—Si1—C14 | 111.70 (10) |
| C9—C10—H10 | 119.9 | ||
| C1—C2—C3—C4 | 178.69 (16) | C5—C6—C7—C8 | −177.53 (16) |
| C1—C2—C7—C6 | −179.69 (14) | C6—C7—C8—C9 | 179.94 (15) |
| C1—C2—C7—C8 | −0.9 (2) | C6—C7—C8—C11 | 1.9 (2) |
| C2—C1—C10—C9 | −0.7 (3) | C7—C2—C3—C4 | 1.7 (2) |
| C2—C1—N1—O1 | 21.6 (2) | C7—C8—C9—C10 | −1.2 (2) |
| C2—C1—N1—O2 | −158.72 (17) | C8—C9—C10—C1 | 0.9 (3) |
| C2—C3—C4—C5 | 0.2 (3) | C10—C1—C2—C3 | −176.32 (16) |
| C2—C7—C8—C9 | 1.2 (2) | C10—C1—C2—C7 | 0.7 (2) |
| C2—C7—C8—C11 | −176.86 (14) | C10—C1—N1—O1 | −158.99 (17) |
| C3—C2—C7—C6 | −2.4 (2) | C10—C1—N1—O2 | 20.7 (2) |
| C3—C2—C7—C8 | 176.36 (15) | C11—C8—C9—C10 | 176.88 (15) |
| C3—C4—C5—C6 | −1.5 (3) | N1—C1—C2—C3 | 3.1 (3) |
| C4—C5—C6—C7 | 0.7 (3) | N1—C1—C2—C7 | −179.89 (14) |
| C5—C6—C7—C2 | 1.2 (2) | N1—C1—C10—C9 | 179.83 (14) |
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5846).
References
- Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118.
- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377–2385. [DOI] [PubMed]
- McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.
- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33–40.
- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem. 519, 229–235.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Squadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231–235. [DOI] [PubMed]
- Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007173/xu5846sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007173/xu5846Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015007173/xu5846Isup3.cml
. DOI: 10.1107/S2056989015007173/xu5846fig1.tif
Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.
1 13 . DOI: 10.1107/S2056989015007173/xu5846fig2.tif
Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for 1H and 13C NMR assignments.
CCDC reference: 1058939
Additional supporting information: crystallographic information; 3D view; checkCIF report

