Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):o353. doi: 10.1107/S2056989015008075

Crystal structure of N-(4-chloro­phen­yl)benzo­thio­amide

Ganlin Zhao a,*
PMCID: PMC4420071  PMID: 25995944

Abstract

The title compound, C13H10ClNS, exhibits a trans conformation with regard to the axis of the C—N bond. The benzene and phenyl rings are inclined to one another by 85.06 (8)°. In the crystal, mol­ecules are linked by N—H⋯S=C hydrogen bonds, forming chains along [001].

Keywords: crystal structure, benzo­thio­amide, N—H⋯S hydrogen bonding.

Related literature  

For hydrogen bonding of amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For the preparation and for the use of thio­amides as inter­mediates in chemical transformations, see: Li et al. (2012, 2015). For related structures, see: Omondi et al. (2012); Nagasawa et al. (2014).graphic file with name e-71-0o353-scheme1.jpg

Experimental  

Crystal data  

  • C13H10ClNS

  • M r = 247.73

  • Monoclinic, Inline graphic

  • a = 11.943 (2) Å

  • b = 12.689 (3) Å

  • c = 7.9764 (16) Å

  • β = 109.30 (3)°

  • V = 1140.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.12 mm

Data collection  

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.901, T max = 0.944

  • 7517 measured reflections

  • 2010 independent reflections

  • 1701 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.077

  • S = 1.05

  • 2010 reflections

  • 150 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008075/su5123sup1.cif

e-71-0o353-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008075/su5123Isup2.hkl

e-71-0o353-Isup2.hkl (98.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008075/su5123Isup3.cml

. DOI: 10.1107/S2056989015008075/su5123fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015008075/su5123fig2.tif

A view along the b axis of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1061304

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1S1i 0.89(1) 2.49(1) 3.346(15) 163(1)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

S1. Comment

Thioamides are extensively used as extractant for heavy metals in environmental chemistry, as intermediate for important chemical transformations (Li et al., 2015), and also used to replace the amide bonds as isosteres. It's well known that amide units can be connected by a N—H···O=C hydrogen bonds (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and also the structures of some thioamides have been documented (Omondi et al., 2012; Nagasawa et al., 2014). Herein, we report the crystal structure of the title compound (I).

Figure 1 has shows the molecular structure of the title compound, whose thioamide unit adopts a trans conformation around the central C-N bond. The C=S double bond is deviated from its connected phenyl ring [torsion angles: S1/C7/C8/C9 -145.34 (13)°,S1/C7/C8/C13 33.62 (19)°]. The benzene and phenyl rings are inclined to one another by 85.06 (8) °.

In the crystal, molecules are linked via N—H···S═C hydrogen bonds, forming chains along the c axis direction (Table 1 and Fig. 2).

S2. Experimental

The title compound was prepared from the Beckmann rearrangement from its corresponding ketoximes following a published procedure (Li et al., 2012). It was isolated by flash chromatography and yellow block-like crystal of the title compound were obtained via natural evaporation from the diluent.

S3. Refinement

The thioamide N—H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound. The N—H···S hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C13H10ClNS F(000) = 512
Mr = 247.73 Dx = 1.442 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3499 reflections
a = 11.943 (2) Å θ = 1.8–27.9°
b = 12.689 (3) Å µ = 0.49 mm1
c = 7.9764 (16) Å T = 113 K
β = 109.30 (3)° Block, yellow
V = 1140.9 (4) Å3 0.22 × 0.20 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 2010 independent reflections
Radiation source: rotating anode 1701 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.030
Detector resolution: 7.31 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω and φ scans h = −11→14
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −15→15
Tmin = 0.901, Tmax = 0.944 l = −9→9
7517 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.1743P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
2010 reflections Δρmax = 0.22 e Å3
150 parameters Δρmin = −0.18 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.050 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.94504 (4) 0.58973 (3) 1.20150 (5) 0.01919 (16)
Cl1 1.47747 (4) 0.84240 (4) 1.54329 (6) 0.02760 (17)
N1 1.02619 (11) 0.71403 (10) 0.99722 (17) 0.0160 (3)
C1 1.13474 (13) 0.74209 (12) 1.1311 (2) 0.0159 (3)
C2 1.21244 (14) 0.66609 (13) 1.2321 (2) 0.0201 (4)
H2 1.1936 0.5949 1.2147 0.024*
C3 1.31777 (14) 0.69722 (13) 1.3583 (2) 0.0218 (4)
H3 1.3698 0.6470 1.4264 0.026*
C4 1.34551 (14) 0.80302 (13) 1.3828 (2) 0.0186 (4)
C5 1.26984 (15) 0.87901 (13) 1.2816 (2) 0.0219 (4)
H5 1.2895 0.9501 1.2982 0.026*
C6 1.16448 (15) 0.84782 (13) 1.1550 (2) 0.0194 (4)
H6 1.1134 0.8982 1.0857 0.023*
C7 0.94159 (14) 0.64895 (12) 1.0128 (2) 0.0159 (4)
C8 0.83987 (14) 0.63239 (12) 0.8467 (2) 0.0161 (4)
C9 0.85648 (15) 0.62942 (12) 0.6821 (2) 0.0182 (4)
H9 0.9320 0.6389 0.6751 0.022*
C10 0.76076 (16) 0.61237 (13) 0.5280 (2) 0.0226 (4)
H10 0.7725 0.6106 0.4184 0.027*
C11 0.64826 (16) 0.59810 (13) 0.5376 (2) 0.0249 (4)
H11 0.5842 0.5868 0.4347 0.030*
C12 0.63130 (15) 0.60079 (13) 0.7015 (2) 0.0251 (4)
H12 0.5557 0.5910 0.7082 0.030*
C13 0.72593 (14) 0.61784 (12) 0.8545 (2) 0.0201 (4)
H13 0.7137 0.6197 0.9637 0.024*
H1 1.0058 (16) 0.7552 (13) 0.9013 (17) 0.030 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0205 (2) 0.0192 (2) 0.0179 (3) −0.00251 (17) 0.00650 (18) 0.00248 (16)
Cl1 0.0174 (2) 0.0353 (3) 0.0268 (3) −0.00442 (18) 0.00281 (18) −0.00048 (18)
N1 0.0177 (7) 0.0151 (7) 0.0155 (7) −0.0010 (6) 0.0057 (6) 0.0010 (6)
C1 0.0158 (8) 0.0181 (8) 0.0164 (8) −0.0003 (7) 0.0090 (7) −0.0010 (6)
C2 0.0187 (9) 0.0154 (8) 0.0280 (9) 0.0004 (7) 0.0102 (7) 0.0010 (7)
C3 0.0170 (8) 0.0215 (9) 0.0279 (10) 0.0042 (7) 0.0089 (7) 0.0066 (7)
C4 0.0138 (8) 0.0245 (9) 0.0186 (8) −0.0014 (7) 0.0070 (7) −0.0008 (7)
C5 0.0231 (9) 0.0177 (8) 0.0249 (9) −0.0026 (7) 0.0081 (8) −0.0024 (7)
C6 0.0192 (9) 0.0175 (8) 0.0211 (9) 0.0029 (7) 0.0063 (7) 0.0016 (6)
C7 0.0173 (8) 0.0118 (7) 0.0210 (9) 0.0028 (6) 0.0096 (7) −0.0021 (6)
C8 0.0186 (8) 0.0098 (7) 0.0201 (8) 0.0007 (6) 0.0065 (7) −0.0005 (6)
C9 0.0202 (9) 0.0133 (8) 0.0223 (9) −0.0018 (7) 0.0085 (7) 0.0000 (7)
C10 0.0300 (10) 0.0194 (8) 0.0186 (9) −0.0017 (8) 0.0081 (8) −0.0018 (7)
C11 0.0234 (9) 0.0257 (9) 0.0202 (9) −0.0010 (8) 0.0001 (7) −0.0017 (7)
C12 0.0171 (9) 0.0280 (9) 0.0285 (10) 0.0010 (8) 0.0052 (7) 0.0009 (8)
C13 0.0192 (9) 0.0210 (9) 0.0212 (9) 0.0019 (7) 0.0080 (7) 0.0011 (7)

Geometric parameters (Å, º)

S1—C7 1.6705 (16) C6—H6 0.9300
Cl1—C4 1.7430 (17) C7—C8 1.487 (2)
N1—C7 1.342 (2) C8—C9 1.391 (2)
N1—C1 1.426 (2) C8—C13 1.395 (2)
N1—H1 0.891 (9) C9—C10 1.392 (2)
C1—C6 1.385 (2) C9—H9 0.9300
C1—C2 1.395 (2) C10—C11 1.383 (2)
C2—C3 1.384 (2) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.388 (3)
C3—C4 1.381 (2) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.379 (2)
C4—C5 1.384 (2) C12—H12 0.9300
C5—C6 1.385 (2) C13—H13 0.9300
C5—H5 0.9300
C7—N1—C1 127.60 (13) N1—C7—C8 115.00 (13)
C7—N1—H1 116.1 (12) N1—C7—S1 124.40 (13)
C1—N1—H1 114.8 (12) C8—C7—S1 120.59 (12)
C6—C1—C2 119.92 (15) C9—C8—C13 118.95 (15)
C6—C1—N1 118.25 (14) C9—C8—C7 121.01 (15)
C2—C1—N1 121.77 (14) C13—C8—C7 120.03 (15)
C3—C2—C1 119.60 (15) C8—C9—C10 120.42 (16)
C3—C2—H2 120.2 C8—C9—H9 119.8
C1—C2—H2 120.2 C10—C9—H9 119.8
C4—C3—C2 119.90 (15) C11—C10—C9 120.03 (16)
C4—C3—H3 120.0 C11—C10—H10 120.0
C2—C3—H3 120.0 C9—C10—H10 120.0
C3—C4—C5 120.96 (15) C10—C11—C12 119.76 (16)
C3—C4—Cl1 119.94 (13) C10—C11—H11 120.1
C5—C4—Cl1 119.09 (13) C12—C11—H11 120.1
C4—C5—C6 119.13 (15) C13—C12—C11 120.34 (16)
C4—C5—H5 120.4 C13—C12—H12 119.8
C6—C5—H5 120.4 C11—C12—H12 119.8
C1—C6—C5 120.46 (15) C12—C13—C8 120.50 (16)
C1—C6—H6 119.8 C12—C13—H13 119.7
C5—C6—H6 119.8 C8—C13—H13 119.7
C7—N1—C1—C6 −131.37 (16) C1—N1—C7—S1 2.6 (2)
C7—N1—C1—C2 51.1 (2) N1—C7—C8—C9 35.2 (2)
C6—C1—C2—C3 1.3 (2) S1—C7—C8—C9 −145.34 (13)
N1—C1—C2—C3 178.80 (14) N1—C7—C8—C13 −145.86 (15)
C1—C2—C3—C4 −0.3 (2) S1—C7—C8—C13 33.62 (19)
C2—C3—C4—C5 −0.7 (2) C13—C8—C9—C10 0.1 (2)
C2—C3—C4—Cl1 179.35 (12) C7—C8—C9—C10 179.08 (14)
C3—C4—C5—C6 0.5 (2) C8—C9—C10—C11 −0.1 (2)
Cl1—C4—C5—C6 −179.46 (12) C9—C10—C11—C12 0.0 (2)
C2—C1—C6—C5 −1.5 (2) C10—C11—C12—C13 0.2 (3)
N1—C1—C6—C5 −179.01 (14) C11—C12—C13—C8 −0.1 (2)
C4—C5—C6—C1 0.5 (2) C9—C8—C13—C12 0.0 (2)
C1—N1—C7—C8 −177.96 (13) C7—C8—C13—C12 −178.98 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.89 (1) 2.49 (1) 3.346 (15) 163 (1)

Symmetry code: (i) x, −y+3/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5123).

References

  1. Leiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372–2382.
  2. Li, J. S., Cheng, C., Zhang, X. R., Li, Z. W., Cai, F. F., Xue, Y. & Liu, W. D. (2012). Chin. J. Chem. 30, 1687–1689.
  3. Li, J. S., Xue, Y., Li, P. Y., Li, Z. W., Lu, C. H., Liu, W. D., Pang, H. L., Liu, D. H., Lin, M. S., Luo, B. B. & Jiang, W. (2015). Res. Chem. Intermed. 41, 2235–2247.
  4. Nagasawa, M., Sasanuma, Y. & Masu, H. (2014). Acta Cryst. E70, o639. [DOI] [PMC free article] [PubMed]
  5. Omondi, B. & Levendis, D. C. (2012). Acta Cryst. E68, o2604. [DOI] [PMC free article] [PubMed]
  6. Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Taylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280–288.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008075/su5123sup1.cif

e-71-0o353-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008075/su5123Isup2.hkl

e-71-0o353-Isup2.hkl (98.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008075/su5123Isup3.cml

. DOI: 10.1107/S2056989015008075/su5123fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015008075/su5123fig2.tif

A view along the b axis of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1061304

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES