Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 2;71(Pt 5):447–451. doi: 10.1107/S2056989015006076

Crystal structures of di­chlorido­palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di­phenyl­phosphan­yl)quinoline

Takayoshi Suzuki a,*, Hiroshi Yamaguchi b, Masayuki Fujiki b, Akira Hashimoto b, Hideo D Takagi b
PMCID: PMC4420072  PMID: 25995852

8-(Di­phenyl­phosphan­yl)quinoline (Ph2Pqn) acts as an asymmetric bidentate ligand to form a planar five-membered chelate ring in the di­chlorido­palladium(II) and -platinum(II) complexes, (SP-4)-[MCl2(Ph2Pqn)] (M = Pd or Pt), as well as in the di­chlorido­rhodium(III) complex, (OC-6-32)-[RhCl2(Ph2Pqn)2]PF6.

Keywords: crystal structure, 8-quinolylphos­phane, stacking inter­action, geometrical structure, trans influence

Abstract

The crystal structures of di­chlorido­palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di­phenyl­phosphan­yl)quinoline, (SP-4)-[PdCl2(C21H16NP)], (1) [systematic name: di­chlor­ido­(8-di­phenyl­phosphanyl­quinoline)­palladium(II)], (SP-4)-[PtCl2(C21H16NP)]·CH2Cl2, (2) [systematic name: di­chlorido­(8-di­phenyl­phos­phanyl­quinoline)­platinum(II) dichlorometh­ane monosolvate], and (OC-6–32)-[RhCl2(C21H16NP)2]PF6·0.5CH2Cl2·0.5CH3OH, (3) [systematic name: cis-di­chlor­ido­bis­(8-di­phenyl­phosphanyl­quinoline)­rhodium(III) hexa­fluorido­phos­phate di­chloro­methane/­methanol hemisolvate] are reported. In these complexes, the phosphanyl­quinoline acts as a bidentate ligand, forming a planar asymmetrical five-membered chelate ring. The palladium(II) and platinum(II) complex mol­ecules in (1) and (2), respectively, show a typical square-planar coordination geometry and form a dimeric structure through an inter­molecular π–π stacking inter­action between the quinolyl rings. The centroid–centroid distances between the stacked six-membered rings in (1) and (2) are 3.633 (2) and 3.644 (2) Å, respectively. The cationic rhodium(III) complex in (3) has a cis(Cl),cis(P),cis(N) (OC-6–32) configuration of the ligands, in which two kinds of intra­molecular π–π stacking inter­actions are observed: between the quinolyl and phenyl rings and between two phenyl rings, the centroid–centroid distances being 3.458 (2) and 3.717 (2) Å, respectively. The PF6 anion in (3) is rotationally disordered, the site occupancies of each F atom being 0.613 (14) and 0.387 (14). The CH2Cl2 and CH3OH solvent mol­ecules are also disordered and equal site occupancies of 0.5 are assumed.

Chemical context  

8-Quinolylphosphanes are an inter­esting class of ligands because they form a planar asymmetrical five-membered chelate ring via coordination through quinoline-N and phosphane-P atoms (Issleib & Hörnig, 1972; Salem & Wild, 1992; Wehman et al., 1997). The electronic differentiation of the donor groups, in particular their π-bonding natures, may stabilize unusual electronic states of their transition metal complexes (Espinet & Soulantica, 1999). In addition, the steric requirement from the quinolyl moiety often has a strong influence on the properties of their metal complexes. For example, the nickel(II) and palladium(II) complexes containing two 8-(di­phenyl­phosphan­yl)quinoline (Ph2Pqn) mol­ecules with a cis(P) configuration showed a severe distortion of the square-planar coordination geometry around NiII and PdII as a result of the steric hindrance between mutually cis-positioned quinolyl groups (Suzuki, 2004; Hashimoto et al., 2010). Several crystallographic studies have been performed for other Ph2Pqn complexes, as described in §4, but not for the platinum(II) and rhodium(III) complexes. In 1979, the preparation and spectroscopic characterization of [MCl2(Ph2Pqn)] (M = PdII, PtII, and RhII) was reported (Hudali et al., 1979), but the crystal structures of these complexes were not confirmed, except for [PdCl2(Ph2Pqn)]·CH2Cl2 (Bastanov et al., 2009). In particular, it is worthwhile to reinvestigate the rhodium(II) complex because it was prepared from RhCl3·3H2O and Ph2Pqn in acetone (Hudali et al., 1979).graphic file with name e-71-00447-scheme1.jpg

Structural commentary  

A yellow block-shaped crystal of the PdII complex, (SP-4)-[PdCl2(Ph2Pqn)], (1), recrystallized from hot aceto­nitrile, was used for the X-ray diffraction analysis. The complex mol­ecule (Fig. 1) has a typical square-planar coordination geometry with a chelating Ph2Pqn ligand, whose P1—Pd1—N1 bite angle is 84.75 (6)°. The quinolyl plane is almost co-planar to the PdII coordination plane; the dihedral angle between these planes is only 8.58 (3)°. The two Pd—Cl bonds show a significant difference in length [Pd1—Cl1 2.3716 (6) vs Pd1—Cl2 2.2885 (7) Å], indicating a strong trans influence of the phosphane donor group. The corresponding Pd—Cl bond in cis(P)-[PdCl(Ph2Pqn)2]BF4, which is also trans to the phosphane donor of Ph2Pqn, was similarly long at 2.375 (2) Å (Suzuki, 2004). On the other hand, the Pd1—P1 bond [2.2026 (6) Å] in (1) is slightly shorter than those in cis(P)-[PdCl(Ph2Pqn)2]BF4 and cis(P)-[Pd(Ph2Pqn)2]X 2 (X = Cl or Br) [2.229 (2)–2.267 (2) Å], presumably due to the steric congestion in the above bis­(Ph2Pqn)-type complexes. The Pd1—N1 bond length in (1) is 2.065 (2) Å. The dihedral angles between the quinolyl ring system and the two phenyl rings of the coordinated Ph2Pqn are 72.34 (8) and 74.79 (8)°.

Figure 1.

Figure 1

An ORTEP of the mol­ecular structure of [PdCl2(Ph2Pqn)], (1), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

When the platinum(II) complex was recrystallized from di­chloro­methane, the resulting crystals contained a CH2Cl2 mol­ecule per a complex mol­ecule: [PtCl2(Ph2Pqn)]·CH2Cl2 (2). The X-ray analysis revealed that it was isomorphous with the PdII analogue, [PdCl2(Ph2Pqn)]·CH2Cl2, which has been deposited in the Cambridge Structural Database (Bastanov et al., 2009). The mol­ecular structure of the PtII complex moiety with a square-planar coordination geometry (Fig. 2) is very similar to the above PdII complex in (1). The Pt1—P1 and Pt1—N1 bond lengths are 2.1963 (6) and 2.051 (2) Å, respectively, and the Ph2Pqn bite angle (P1—Pt1—N1) is 85.44 (6)°. The Pt1—Cl1 and Pt1—Cl2 bond lengths are 2.3747 (6) and 2.3002 (7) Å, respectively, also indicative of a strong trans influence of the phosphane donor group.

Figure 2.

Figure 2

An ORTEP of the mol­ecular structure of [PtCl2(Ph2Pqn)]·CH2Cl2, (2), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Pale yellow prismatic crystals of [RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH (3) were analyzed by the X-ray diffraction method, and it was revealed that the complex cation has an octa­hedral coordination geometry with a cis(Cl),cis(P),cis(N) (OC-6-32) configuration (Figs. 3 and 4). As a result of the strong trans influence of the phosphane donor, the two Rh—Cl and the two Rh—N bond lengths are significantly different from each other. The Rh1—Cl1 bond [2.3787 (6) Å] is longer by 0.045 Å than Rh1—Cl2 [2.3338 (7) Å], while Rh1—N1 [2.168 (2) Å] is longer by 0.10 Å than Rh1—N11 [2.065 (2) Å]. This fact suggests that the trans influence of the phosphane donor is much effective for the Rh—N(quinoline) bond rather than the Rh—Cl bond. Two slightly deviated Rh—P bond lengths [Rh1—P1 2.2897 (7) vs. Rh1—P2 2.2531 (8) Å] seem to result from different steric congestion around the P donor atoms. The larger bond angle of P1—Rh1—P2 [100.55 (3)°] than the ideal right angle is also suggestive of steric inter­action between the two phosphane groups. However, the mol­ecular structure of the complex cation (Fig. 3) also suggests an intra­molecular π–π stacking inter­action between the C27–C32 and C39–C44 phenyl rings. The centroid–centroid distance between these rings is 3.717 (2) Å. An other intra­molecular π–π stacking inter­action is also found between the N11/C12–C14/C20/C19 ring of the quinolyl substituent and the C21–C26 phenyl ring, the centroid–centroid distance being 3.458 (2) Å. These inter­actions could stabilize the cis(Cl),cis(P),cis(N) configuration of the RhIII complex cation [RhCl2(Ph2Pqn)2]+.

Figure 3.

Figure 3

An ORTEP of the complex molecule in (OC-6–32)-[RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH, (3), showing the atom-numbering scheme, with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms are omitted for clarity.

Figure 4.

Figure 4

Possible configurations and notation for the [RhCl2(P–N)2]+ complex cation.

The crystal structures of the related complexes with (2-amino­eth­yl)di­phenyl­phosphane, [RhCl2(Ph2PCH2CH2NH2)2]+, were reported to have the trans(Cl),cis(P) (OC-6-13) or cis(Cl),trans(P) (OC-6-33) configuration (Fig. 4) (Galsbøl et al., 1986). If the trans(Cl),cis(P) configuration were assumed for the present Ph2Pqn complex, the mol­ecule would have severe steric hindrance between the ortho-H atoms of the mutually cis-positioned quinolyl groups, as observed in the crystal structures of cis(P)-[Pd(Ph2Pqn)2]X 2 (Suzuki, 2004). The trans(P) configurations, i.e., trans(Cl),trans(P) (OC-6-12) and cis(Cl),trans(P) (OC-6-33), would be unfavorable due to the mutually trans disposition of the phosphane groups having a strong trans influence. The last configuration, cis(Cl),trans(N) (OC-6-22), cannot form an intra­molecular stacking inter­action between the aryl groups of the phosphanes. Therefore, the observed cis(Cl),cis(P),cis(N) geometrical isomer could be the most favorable from the steric and electronic points of views.

Supra­molecular features  

In the crystal structure of (1), there is an inter­molecular π–π stacking inter­action between the quinolyl planes, forming an inversion dimer (Fig. 5). The centroid–centroid distance between the N1/C2–C4/C10/C9 ring and the C5i–C10i ring of the neighbouring mol­ecule [symmetry code: (i) 1 – x, 1 – y, 2 – z] is 3.633 (2) Å.

Figure 5.

Figure 5

A view of the crystal packing of [PdCl2(Ph2Pqn)], (1), illustrating the π–π stacking inter­actions between the complexes. Color code: Pd, purple; Cl, green; P, yellow; N, blue; C, black; and H, gray.

The PtII complex in (2) also forms an inversion dimer unit by an inter­molecular π–π stacking inter­action between the quinolyl rings of neighbouring mol­ecules (Fig. 6). The centroid–centroid distance between the N1/C2–C4/C10/C9 ring and the C5ii–C10ii ring of the neighbouring mol­ecule [symmetry code: (ii) 1 – x, –y, 1 – z] is 3.644 (2) Å.

Figure 6.

Figure 6

A view of the crystal packing of [PtCl2(Ph2Pqn)]·CH2Cl2, (2), illustrating the π–π stacking inter­actions between the complexes. Color code: Pt, purple; Cl, green; P, yellow; N, blue; C, black; and H, gray.

No remarkable inter­molecular stacking or hydrogen-bonding inter­actions are observed in the crystal structure of (3).

Database survey  

The crystal structure of Ph2Pqn was reported previously (Nag et al., 2010). Several metal complexes containing Ph2Pqn have also reported by us and others, e.g., [Ni(Ph2Pqn)2](BF4)n (n = 1 or 2; Hashimoto et al., 2010), [Pd(Ph2Pqn)2]X 2 (X = Cl, Br, or BF4; Suzuki, 2004), [Ru(bpy)2(Ph2Pqn)](PF6)2 (bpy = 2,2-bi­pyridine; Suzuki et al., 2002), [Cp*Ir(N3)(Ph2Pqn)] (Cp* = penta­methyl­cyclo­penta­dienyl; Suzuki et al., 2009), [Cu(Ph2Pqn)2]BF4 (Suzuki et al., 2011), [NiCl(C10H7)(Ph2Pqn)] (C10H7 = 1-naphthyl; Sun et al., 2002), [Cu(Ph2Pqn)2]PF6 and [ZnX 2(Ph2Pqn)] (X = Cl, Br, or I; Tsukuda et al., 2009), [Cu(Ph2Pqn){(Ph2PC6H4)2O}]BF4 (Qin et al., 2009), [AuCl(Ph2Pqn)] (Monkowius et al., 2009), [PdCl(C3H5)(Ph2Pqn)], [Pd(C3H5)(Ph2Pqn)]ClO4, [Pd(Ph2Pqn)(MeOOCC≡CCOOMe)] and [Pd(Ph2Pqn){MeOOC(Me)C=CCOOMe}] (C3H5 = allyl; Canovese et al., 2010). In addition, the crystal structure of [PdCl2(Ph2Pqn)]·CH2Cl2 has been deposited (Bastanov et al., 2009).

Synthesis and crystallization  

The ligand, Ph2Pqn, was prepared according to a literature method (Feltham & Metzger, 1971; Aguirre et al., 2007). The di­chlorido­palladium(II) and platinum(II) complexes, [PdCl2(Ph2Pqn)] and [PtCl2(Ph2Pqn)], were prepared by the method reported previously by Hudali et al. (1979). The palladium(II) complex was recrystallized from hot aceto­nitrile to afford yellow block-shaped crystals of [PdCl2(Ph2Pqn)], (1). Analysis calculated for C21H16Cl2NPPd: C 51.4, H 3.29, N 2.85%. Found: C 51.2, H 3.25, N 2.87%.

The colorless platelet crystals of the platinum(II) complex, [PtCl2(Ph2Pqn)]·CH2Cl2, (2), were obtained by recrystallization from di­chloro­methane. Analysis calculated for C21H16Cl2NPPt: C 43.5, H 2.78, N 2.42%. Found (after drying completely): C 42.8, H 2.75, N 2.44%.

The PF6 salt of the di­chlorido­rhodium(III) complex, [RhCl2(Ph2Pqn)2]PF6, was precipitated from a methanol solution of RhCl3(Ph2Pqn)2(H2O), which was prepared by a reaction of RhCl3·3H2O and two equivalent amounts of Ph2Pqn in boiling water, by addition of a saturated methanol solution of NH4PF6. The crude product was recrystallized from a mixture of di­chloro­methane and methanol, affording pale-yellow prismatic crystals of [RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH (3). These crystals were efflorescent when they were picked up from the mother liquor. Analysis calculated for C42H32Cl2F6N2P3Rh·2H2O: C 51.4, H 3.70, N 2.85%. Found (after drying completely): C 51.6, H 3.55, N 2.85%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were refined using a riding model, with O—H = 0.84 Å and C—H = 0.95 (aromatic), 0.99 (methyl­ene) or 0.98 (meth­yl) Å, and with U iso(H) = 1.2 or 1.5U eq(C,O). During the refinement for (3), each F atom of the PF6 anion was found to have a large displacement ellipsoid elongated in the direction perpendic­ular to the P—F bond, which was attributable to rotational disorder of the anion over two positions. The occupancies of each F atom refined to 0.613 (14) and 0.387 (14). In addition, since the crystal structure of (3) contains a void accessible for a solvent mol­ecule, disordered CH2Cl2 and CH3OH mol­ecules with equal probabilities of 0.5 were assumed. In the refinement, the P—F, C—Cl and C—O bond lengths and the Cl—C—Cl bond angle were restrained to be 1.55 (1), 1.75 (1), 1.42 (2) Å and 112.0 (2)°, respectively. Rigid bond restraints were also applied for the disordered CH2Cl2 and CH3OH mol­ecules.

Table 1. Experimental details.

  (1) (2) (3)
Crystal data
Chemical formula [PdCl2(C21H16NP)] [PtCl2(C21H16NP)]·CH2Cl2 [RhCl2(C21H16NP)2](PF6)·0.5CH2Cl2·0.5CH4O
M r 490.62 664.23 1003.90
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 200 200 200
a, b, c (Å) 9.0293 (5), 15.2154 (8), 13.7936 (6) 13.9280 (5), 9.2371 (3), 17.8941 (6) 9.841 (5), 13.825 (6), 16.167 (8)
α, β, γ (°) 90, 91.8197 (13), 90 90, 102.8447 (10), 90 87.307 (19), 81.80 (2), 70.819 (18)
V3) 1894.07 (16) 2244.53 (13) 2056.2 (17)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.35 6.81 0.79
Crystal size (mm) 0.18 × 0.15 × 0.12 0.25 × 0.24 × 0.05 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999) Numerical (NUMABS; Rigaku, 1999) Multi-scan (ABSCOR.; Rigaku, 1995)
T min, T max 0.693, 0.850 0.281, 0.727 0.848, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 18103, 4283, 3913 20995, 5081, 4665 20385, 9338, 7245
R int 0.034 0.028 0.046
(sin θ/λ)max−1) 0.649 0.648 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.074, 0.92 0.017, 0.037, 0.98 0.044, 0.120, 1.06
No. of reflections 4283 5081 9338
No. of parameters 235 262 605
No. of restraints 0 0 20
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.84, −0.50 0.58, −0.60 0.68, −1.03

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), DIRDIF99-PATTY (Beurskens et al., 1999), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989015006076/is5392sup1.cif

e-71-00447-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015006076/is53921sup2.hkl

e-71-00447-1sup2.hkl (235KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015006076/is53922sup3.hkl

e-71-00447-2sup3.hkl (278.6KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989015006076/is53923sup4.hkl

e-71-00447-3sup4.hkl (511.4KB, hkl)

CCDC references: 1056041, 1056040, 1056039

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research No. 25410070 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

supplementary crystallographic information

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Crystal data

[PdCl2(C21H16NP)] F(000) = 976
Mr = 490.62 Dx = 1.721 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 9.0293 (5) Å Cell parameters from 10456 reflections
b = 15.2154 (8) Å θ = 3.0–27.5°
c = 13.7936 (6) Å µ = 1.35 mm1
β = 91.8197 (13)° T = 200 K
V = 1894.07 (16) Å3 Block, yellow
Z = 4 0.18 × 0.15 × 0.12 mm

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Data collection

Rigaku R-AXIS RAPID diffractometer 4283 independent reflections
Radiation source: fine-focus sealed tube 3913 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.034
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: numerical (NUMABS; Rigaku, 1999) h = −11→9
Tmin = 0.693, Tmax = 0.850 k = −19→19
18103 measured reflections l = −17→17

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0416P)2 + 2.3772P] where P = (Fo2 + 2Fc2)/3
4283 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.84 e Å3
0 restraints Δρmin = −0.50 e Å3

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.42495 (2) 0.29307 (2) 0.78114 (2) 0.02590 (7)
Cl1 0.57514 (7) 0.16783 (4) 0.81289 (5) 0.04011 (15)
Cl2 0.39715 (8) 0.25626 (5) 0.62073 (5) 0.04049 (16)
P1 0.28188 (6) 0.40803 (4) 0.75258 (4) 0.02469 (13)
N1 0.4378 (2) 0.33998 (13) 0.92166 (15) 0.0296 (4)
C2 0.5290 (3) 0.30655 (17) 0.9896 (2) 0.0359 (6)
H2 0.5960 0.2618 0.9714 0.043*
C3 0.5315 (3) 0.33376 (19) 1.0863 (2) 0.0414 (6)
H3 0.5995 0.3081 1.1320 0.050*
C4 0.4363 (3) 0.39706 (19) 1.11443 (19) 0.0400 (6)
H4 0.4334 0.4139 1.1807 0.048*
C5 0.2453 (3) 0.50817 (18) 1.06576 (19) 0.0396 (6)
H5 0.2397 0.5283 1.1307 0.047*
C6 0.1606 (3) 0.54738 (18) 0.9943 (2) 0.0391 (6)
H6 0.0978 0.5950 1.0101 0.047*
C7 0.1650 (3) 0.51819 (17) 0.89779 (18) 0.0333 (5)
H7 0.1053 0.5460 0.8489 0.040*
C8 0.2560 (3) 0.44917 (15) 0.87408 (17) 0.0271 (5)
C9 0.3462 (3) 0.40817 (15) 0.94699 (17) 0.0280 (5)
C10 0.3411 (3) 0.43799 (17) 1.04423 (18) 0.0346 (5)
C11 0.0989 (3) 0.39004 (15) 0.70011 (17) 0.0279 (5)
C12 0.0674 (3) 0.40697 (17) 0.60209 (19) 0.0335 (5)
H12 0.1406 0.4325 0.5629 0.040*
C13 −0.0709 (3) 0.38636 (19) 0.5624 (2) 0.0402 (6)
H13 −0.0932 0.3987 0.4960 0.048*
C14 −0.1766 (3) 0.3481 (2) 0.6186 (2) 0.0440 (7)
H14 −0.2709 0.3336 0.5905 0.053*
C15 −0.1463 (3) 0.3307 (2) 0.7151 (2) 0.0432 (7)
H15 −0.2198 0.3042 0.7533 0.052*
C16 −0.0090 (3) 0.35166 (17) 0.75691 (19) 0.0341 (5)
H16 0.0114 0.3400 0.8237 0.041*
C17 0.3685 (3) 0.49474 (15) 0.68551 (16) 0.0260 (5)
C18 0.5132 (3) 0.48296 (17) 0.65615 (18) 0.0325 (5)
H18 0.5608 0.4277 0.6651 0.039*
C19 0.5880 (3) 0.55202 (19) 0.61371 (19) 0.0391 (6)
H19 0.6871 0.5441 0.5943 0.047*
C20 0.5192 (3) 0.63163 (19) 0.59974 (19) 0.0405 (6)
H20 0.5711 0.6788 0.5711 0.049*
C21 0.3749 (3) 0.64331 (18) 0.6273 (2) 0.0393 (6)
H21 0.3273 0.6983 0.6163 0.047*
C22 0.2985 (3) 0.57554 (17) 0.67083 (18) 0.0333 (5)
H22 0.1996 0.5841 0.6904 0.040*

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02371 (11) 0.02217 (11) 0.03178 (12) −0.00047 (6) 0.00035 (7) 0.00150 (6)
Cl1 0.0335 (3) 0.0306 (3) 0.0562 (4) 0.0070 (3) 0.0014 (3) 0.0060 (3)
Cl2 0.0487 (4) 0.0367 (3) 0.0361 (3) 0.0004 (3) 0.0012 (3) −0.0069 (2)
P1 0.0232 (3) 0.0233 (3) 0.0276 (3) −0.0006 (2) 0.0002 (2) 0.0007 (2)
N1 0.0268 (10) 0.0295 (11) 0.0323 (11) −0.0045 (8) −0.0015 (8) 0.0046 (8)
C2 0.0336 (14) 0.0307 (13) 0.0427 (15) −0.0045 (10) −0.0076 (11) 0.0079 (10)
C3 0.0452 (16) 0.0406 (15) 0.0376 (15) −0.0086 (13) −0.0108 (11) 0.0079 (11)
C4 0.0478 (17) 0.0442 (16) 0.0276 (13) −0.0135 (13) −0.0061 (11) 0.0016 (11)
C5 0.0490 (17) 0.0379 (14) 0.0322 (14) −0.0090 (12) 0.0081 (11) −0.0077 (10)
C6 0.0426 (16) 0.0317 (14) 0.0436 (16) −0.0012 (11) 0.0109 (11) −0.0056 (11)
C7 0.0337 (13) 0.0300 (13) 0.0366 (14) −0.0012 (10) 0.0057 (10) −0.0008 (10)
C8 0.0260 (12) 0.0269 (12) 0.0286 (12) −0.0045 (9) 0.0020 (9) 0.0000 (9)
C9 0.0273 (12) 0.0252 (11) 0.0314 (12) −0.0074 (9) 0.0006 (9) 0.0010 (9)
C10 0.0397 (15) 0.0321 (13) 0.0320 (13) −0.0117 (11) 0.0001 (10) 0.0006 (10)
C11 0.0247 (12) 0.0237 (11) 0.0354 (13) 0.0009 (9) −0.0006 (9) −0.0019 (9)
C12 0.0334 (13) 0.0317 (13) 0.0351 (14) −0.0009 (10) −0.0032 (10) 0.0010 (10)
C13 0.0360 (15) 0.0385 (15) 0.0451 (16) 0.0083 (11) −0.0136 (11) −0.0063 (11)
C14 0.0280 (14) 0.0427 (16) 0.0607 (19) 0.0062 (12) −0.0074 (12) −0.0177 (13)
C15 0.0275 (14) 0.0441 (16) 0.0583 (19) −0.0037 (12) 0.0083 (12) −0.0111 (13)
C16 0.0296 (13) 0.0351 (13) 0.0375 (14) −0.0036 (10) 0.0023 (10) −0.0022 (10)
C17 0.0257 (12) 0.0273 (11) 0.0250 (11) −0.0040 (9) −0.0015 (8) 0.0006 (8)
C18 0.0302 (13) 0.0298 (13) 0.0375 (14) 0.0002 (10) 0.0030 (10) −0.0015 (10)
C19 0.0343 (14) 0.0434 (15) 0.0400 (15) −0.0089 (12) 0.0096 (11) −0.0019 (11)
C20 0.0496 (17) 0.0358 (14) 0.0362 (14) −0.0142 (12) 0.0028 (11) 0.0044 (11)
C21 0.0473 (16) 0.0287 (13) 0.0415 (15) −0.0018 (11) −0.0053 (11) 0.0064 (10)
C22 0.0295 (13) 0.0328 (13) 0.0374 (14) 0.0000 (10) −0.0013 (10) 0.0033 (10)

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II). Geometric parameters (Å, º)

Pd1—N1 2.065 (2) C9—C10 1.418 (3)
Pd1—P1 2.2026 (6) C11—C12 1.397 (4)
Pd1—Cl2 2.2885 (7) C11—C16 1.397 (3)
Pd1—Cl1 2.3716 (6) C12—C13 1.384 (4)
P1—C11 1.804 (2) C12—H12 0.9500
P1—C17 1.804 (2) C13—C14 1.377 (4)
P1—C8 1.811 (2) C13—H13 0.9500
N1—C2 1.329 (3) C14—C15 1.377 (4)
N1—C9 1.379 (3) C14—H14 0.9500
C2—C3 1.396 (4) C15—C16 1.387 (4)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.356 (4) C16—H16 0.9500
C3—H3 0.9500 C17—C22 1.394 (3)
C4—C10 1.418 (4) C17—C18 1.392 (3)
C4—H4 0.9500 C18—C19 1.388 (4)
C5—C6 1.365 (4) C18—H18 0.9500
C5—C10 1.412 (4) C19—C20 1.372 (4)
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.405 (4) C20—C21 1.381 (4)
C6—H6 0.9500 C20—H20 0.9500
C7—C8 1.379 (3) C21—C22 1.388 (4)
C7—H7 0.9500 C21—H21 0.9500
C8—C9 1.418 (3) C22—H22 0.9500
N1—Pd1—P1 84.75 (6) C5—C10—C9 118.6 (2)
N1—Pd1—Cl2 173.28 (6) C5—C10—C4 123.4 (2)
P1—Pd1—Cl2 88.61 (2) C9—C10—C4 117.9 (3)
N1—Pd1—Cl1 95.14 (6) C12—C11—C16 119.7 (2)
P1—Pd1—Cl1 178.94 (2) C12—C11—P1 121.08 (19)
Cl2—Pd1—Cl1 91.51 (3) C16—C11—P1 119.00 (19)
C11—P1—C17 108.18 (11) C13—C12—C11 119.7 (3)
C11—P1—C8 106.28 (11) C13—C12—H12 120.2
C17—P1—C8 107.01 (11) C11—C12—H12 120.2
C11—P1—Pd1 118.41 (8) C12—C13—C14 120.4 (3)
C17—P1—Pd1 114.27 (8) C12—C13—H13 119.8
C8—P1—Pd1 101.60 (8) C14—C13—H13 119.8
C2—N1—C9 118.2 (2) C15—C14—C13 120.4 (3)
C2—N1—Pd1 122.99 (19) C15—C14—H14 119.8
C9—N1—Pd1 118.79 (16) C13—C14—H14 119.8
N1—C2—C3 123.4 (3) C14—C15—C16 120.3 (3)
N1—C2—H2 118.3 C14—C15—H15 119.8
C3—C2—H2 118.3 C16—C15—H15 119.8
C4—C3—C2 119.5 (3) C15—C16—C11 119.5 (3)
C4—C3—H3 120.2 C15—C16—H16 120.2
C2—C3—H3 120.2 C11—C16—H16 120.2
C3—C4—C10 119.5 (3) C22—C17—C18 119.8 (2)
C3—C4—H4 120.3 C22—C17—P1 121.15 (18)
C10—C4—H4 120.3 C18—C17—P1 118.78 (19)
C6—C5—C10 120.8 (2) C19—C18—C17 119.9 (2)
C6—C5—H5 119.6 C19—C18—H18 120.0
C10—C5—H5 119.6 C17—C18—H18 120.0
C5—C6—C7 120.9 (3) C20—C19—C18 120.2 (3)
C5—C6—H6 119.5 C20—C19—H19 119.9
C7—C6—H6 119.5 C18—C19—H19 119.9
C8—C7—C6 120.0 (3) C19—C20—C21 120.1 (2)
C8—C7—H7 120.0 C19—C20—H20 119.9
C6—C7—H7 120.0 C21—C20—H20 119.9
C7—C8—C9 120.0 (2) C20—C21—C22 120.6 (3)
C7—C8—P1 125.31 (19) C20—C21—H21 119.7
C9—C8—P1 114.59 (18) C22—C21—H21 119.7
N1—C9—C8 119.1 (2) C21—C22—C17 119.3 (2)
N1—C9—C10 121.2 (2) C21—C22—H22 120.4
C8—C9—C10 119.7 (2) C17—C22—H22 120.4
C9—N1—C2—C3 3.4 (4) C3—C4—C10—C9 2.3 (4)
Pd1—N1—C2—C3 −175.5 (2) C17—P1—C11—C12 28.7 (2)
N1—C2—C3—C4 0.5 (4) C8—P1—C11—C12 143.3 (2)
C2—C3—C4—C10 −3.3 (4) Pd1—P1—C11—C12 −103.4 (2)
C10—C5—C6—C7 0.9 (4) C17—P1—C11—C16 −156.7 (2)
C5—C6—C7—C8 −0.2 (4) C8—P1—C11—C16 −42.1 (2)
C6—C7—C8—C9 −0.6 (4) Pd1—P1—C11—C16 71.2 (2)
C6—C7—C8—P1 −176.4 (2) C16—C11—C12—C13 0.6 (4)
C11—P1—C8—C7 −50.7 (2) P1—C11—C12—C13 175.2 (2)
C17—P1—C8—C7 64.7 (2) C11—C12—C13—C14 −1.0 (4)
Pd1—P1—C8—C7 −175.1 (2) C12—C13—C14—C15 0.6 (4)
C11—P1—C8—C9 133.35 (18) C13—C14—C15—C16 0.1 (4)
C17—P1—C8—C9 −111.23 (18) C14—C15—C16—C11 −0.5 (4)
Pd1—P1—C8—C9 8.88 (18) C12—C11—C16—C15 0.1 (4)
C2—N1—C9—C8 175.3 (2) P1—C11—C16—C15 −174.6 (2)
Pd1—N1—C9—C8 −5.7 (3) C11—P1—C17—C22 52.8 (2)
C2—N1—C9—C10 −4.5 (3) C8—P1—C17—C22 −61.3 (2)
Pd1—N1—C9—C10 174.54 (17) Pd1—P1—C17—C22 −172.94 (17)
C7—C8—C9—N1 −179.2 (2) C11—P1—C17—C18 −133.20 (19)
P1—C8—C9—N1 −3.0 (3) C8—P1—C17—C18 112.7 (2)
C7—C8—C9—C10 0.6 (3) Pd1—P1—C17—C18 1.0 (2)
P1—C8—C9—C10 176.80 (18) C22—C17—C18—C19 1.0 (4)
C6—C5—C10—C9 −0.9 (4) P1—C17—C18—C19 −173.1 (2)
C6—C5—C10—C4 177.3 (3) C17—C18—C19—C20 −0.6 (4)
N1—C9—C10—C5 179.9 (2) C18—C19—C20—C21 −0.4 (4)
C8—C9—C10—C5 0.1 (3) C19—C20—C21—C22 1.2 (4)
N1—C9—C10—C4 1.7 (3) C20—C21—C22—C17 −0.8 (4)
C8—C9—C10—C4 −178.1 (2) C18—C17—C22—C21 −0.2 (4)
C3—C4—C10—C5 −175.9 (3) P1—C17—C22—C21 173.7 (2)

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Crystal data

[PtCl2(C21H16NP)]·CH2Cl2 F(000) = 1272
Mr = 664.23 Dx = 1.966 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 13.9280 (5) Å Cell parameters from 12710 reflections
b = 9.2371 (3) Å θ = 3.0–27.4°
c = 17.8941 (6) Å µ = 6.81 mm1
β = 102.8447 (10)° T = 200 K
V = 2244.53 (13) Å3 Platelet, colorless
Z = 4 0.25 × 0.24 × 0.05 mm

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Data collection

Rigaku R-AXIS RAPID diffractometer 5081 independent reflections
Radiation source: fine-focus sealed tube 4665 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.028
ω scans θmax = 27.4°, θmin = 3.0°
Absorption correction: numerical (NUMABS; Rigaku, 1999) h = −18→18
Tmin = 0.281, Tmax = 0.727 k = −11→10
20995 measured reflections l = −23→23

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0073P)2 + 3.0468P] where P = (Fo2 + 2Fc2)/3
5081 reflections (Δ/σ)max = 0.003
262 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.60 e Å3

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.34435 (2) 0.08493 (2) 0.69614 (2) 0.02160 (3)
Cl1 0.40053 (5) −0.06049 (7) 0.80665 (3) 0.03408 (14)
Cl2 0.20025 (5) 0.12939 (8) 0.73477 (4) 0.03670 (15)
Cl3 0.19749 (8) 0.61854 (9) 0.43864 (4) 0.0575 (2)
Cl4 0.04531 (7) 0.67431 (12) 0.30251 (5) 0.0619 (2)
P1 0.29474 (5) 0.22285 (6) 0.59493 (3) 0.02219 (12)
N1 0.46929 (15) 0.0549 (2) 0.65523 (11) 0.0237 (4)
C1 0.1712 (2) 0.6794 (3) 0.34355 (16) 0.0393 (6)
H1A 0.1953 0.7800 0.3420 0.047*
H1B 0.2065 0.6182 0.3131 0.047*
C2 0.5401 (2) −0.0380 (3) 0.68572 (14) 0.0313 (6)
H2 0.5313 −0.0960 0.7275 0.038*
C3 0.6271 (2) −0.0547 (3) 0.65944 (16) 0.0367 (6)
H3 0.6758 −0.1220 0.6834 0.044*
C4 0.6411 (2) 0.0261 (3) 0.59951 (15) 0.0342 (6)
H4 0.7001 0.0164 0.5816 0.041*
C5 0.5755 (2) 0.2104 (3) 0.49983 (15) 0.0352 (6)
H5 0.6324 0.2022 0.4791 0.042*
C6 0.5028 (2) 0.3044 (3) 0.46766 (15) 0.0374 (6)
H6 0.5101 0.3626 0.4255 0.045*
C7 0.4172 (2) 0.3161 (3) 0.49634 (14) 0.0319 (6)
H7 0.3670 0.3821 0.4733 0.038*
C8 0.40500 (18) 0.2329 (3) 0.55748 (13) 0.0241 (5)
C9 0.48110 (18) 0.1374 (3) 0.59276 (13) 0.0239 (5)
C10 0.5677 (2) 0.1246 (3) 0.56378 (14) 0.0283 (5)
C11 0.2562 (2) 0.4050 (3) 0.61167 (13) 0.0274 (5)
C12 0.1573 (2) 0.4345 (3) 0.60854 (17) 0.0403 (7)
H12 0.1089 0.3618 0.5922 0.048*
C13 0.1296 (3) 0.5704 (3) 0.6294 (2) 0.0524 (9)
H13 0.0622 0.5909 0.6272 0.063*
C14 0.2001 (3) 0.6758 (3) 0.65334 (17) 0.0481 (8)
H14 0.1808 0.7685 0.6678 0.058*
C15 0.2971 (3) 0.6479 (3) 0.65643 (16) 0.0440 (8)
H15 0.3449 0.7213 0.6728 0.053*
C16 0.3265 (2) 0.5121 (3) 0.63574 (13) 0.0318 (6)
H16 0.3941 0.4929 0.6381 0.038*
C17 0.20016 (18) 0.1489 (3) 0.51834 (13) 0.0249 (5)
C18 0.1620 (2) 0.0112 (3) 0.52486 (15) 0.0305 (6)
H18 0.1829 −0.0425 0.5709 0.037*
C19 0.0931 (2) −0.0475 (3) 0.46383 (17) 0.0386 (6)
H19 0.0670 −0.1413 0.4685 0.046*
C20 0.0623 (2) 0.0296 (3) 0.39660 (16) 0.0420 (7)
H20 0.0150 −0.0107 0.3553 0.050*
C21 0.1009 (2) 0.1660 (4) 0.38972 (16) 0.0450 (7)
H21 0.0807 0.2186 0.3433 0.054*
C22 0.1687 (2) 0.2259 (3) 0.45004 (15) 0.0383 (6)
H22 0.1941 0.3200 0.4451 0.046*

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02203 (5) 0.02250 (5) 0.02056 (5) −0.00063 (4) 0.00538 (3) −0.00020 (3)
Cl1 0.0310 (4) 0.0435 (4) 0.0267 (3) 0.0012 (3) 0.0042 (2) 0.0108 (3)
Cl2 0.0304 (4) 0.0427 (4) 0.0423 (3) 0.0051 (3) 0.0193 (3) 0.0086 (3)
Cl3 0.0775 (7) 0.0463 (4) 0.0421 (4) 0.0134 (4) −0.0009 (4) 0.0046 (3)
Cl4 0.0372 (5) 0.0920 (7) 0.0503 (4) 0.0008 (4) −0.0034 (4) −0.0148 (4)
P1 0.0220 (3) 0.0218 (3) 0.0232 (3) 0.0003 (2) 0.0059 (2) 0.0005 (2)
N1 0.0226 (11) 0.0256 (10) 0.0228 (9) 0.0005 (8) 0.0051 (8) −0.0043 (8)
C1 0.0342 (17) 0.0445 (16) 0.0389 (14) −0.0001 (13) 0.0073 (12) −0.0018 (13)
C2 0.0304 (15) 0.0352 (14) 0.0272 (12) 0.0058 (11) 0.0044 (11) −0.0013 (11)
C3 0.0298 (15) 0.0410 (15) 0.0380 (14) 0.0096 (12) 0.0046 (12) −0.0075 (12)
C4 0.0260 (15) 0.0414 (15) 0.0365 (14) −0.0005 (12) 0.0094 (11) −0.0142 (12)
C5 0.0317 (16) 0.0429 (16) 0.0355 (13) −0.0102 (12) 0.0173 (12) −0.0097 (12)
C6 0.0428 (18) 0.0401 (15) 0.0333 (13) −0.0084 (13) 0.0171 (12) 0.0016 (12)
C7 0.0351 (16) 0.0312 (13) 0.0299 (12) −0.0027 (11) 0.0080 (11) 0.0010 (11)
C8 0.0228 (13) 0.0256 (12) 0.0245 (11) −0.0032 (10) 0.0063 (9) −0.0048 (9)
C9 0.0257 (13) 0.0250 (11) 0.0212 (11) −0.0051 (10) 0.0057 (9) −0.0074 (9)
C10 0.0255 (14) 0.0306 (13) 0.0297 (12) −0.0058 (10) 0.0078 (10) −0.0104 (10)
C11 0.0363 (15) 0.0233 (12) 0.0242 (11) 0.0019 (11) 0.0104 (10) 0.0017 (9)
C12 0.0383 (18) 0.0309 (14) 0.0558 (18) 0.0018 (12) 0.0191 (14) −0.0023 (13)
C13 0.060 (2) 0.0383 (17) 0.068 (2) 0.0172 (16) 0.0349 (19) 0.0037 (15)
C14 0.085 (3) 0.0241 (14) 0.0436 (16) 0.0096 (15) 0.0329 (17) 0.0021 (12)
C15 0.076 (3) 0.0254 (13) 0.0333 (14) −0.0086 (15) 0.0173 (15) −0.0041 (11)
C16 0.0416 (17) 0.0291 (13) 0.0251 (12) −0.0041 (12) 0.0086 (11) 0.0010 (10)
C17 0.0236 (13) 0.0237 (11) 0.0273 (11) 0.0027 (10) 0.0052 (10) −0.0020 (9)
C18 0.0283 (15) 0.0304 (13) 0.0329 (13) −0.0022 (11) 0.0072 (11) −0.0004 (11)
C19 0.0331 (16) 0.0346 (14) 0.0483 (16) −0.0072 (12) 0.0091 (13) −0.0118 (13)
C20 0.0305 (16) 0.0529 (18) 0.0391 (15) −0.0009 (14) 0.0002 (12) −0.0158 (14)
C21 0.0432 (19) 0.0534 (19) 0.0322 (14) 0.0019 (15) −0.0052 (13) 0.0027 (13)
C22 0.0399 (17) 0.0322 (14) 0.0375 (14) −0.0011 (12) −0.0026 (12) 0.0057 (12)

(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate. Geometric parameters (Å, º)

Pt1—N1 2.051 (2) C7—H7 0.9500
Pt1—P1 2.1963 (6) C8—C9 1.416 (3)
Pt1—Cl2 2.3002 (7) C9—C10 1.420 (3)
Pt1—Cl1 2.3747 (6) C11—C16 1.392 (4)
Cl3—C1 1.752 (3) C11—C12 1.393 (4)
Cl4—C1 1.744 (3) C12—C13 1.388 (4)
P1—C17 1.810 (3) C12—H12 0.9500
P1—C8 1.809 (2) C13—C14 1.381 (5)
P1—C11 1.811 (2) C13—H13 0.9500
N1—C2 1.329 (3) C14—C15 1.366 (5)
N1—C9 1.392 (3) C14—H14 0.9500
C1—H1A 0.9900 C15—C16 1.394 (4)
C1—H1B 0.9900 C15—H15 0.9500
C2—C3 1.402 (4) C16—H16 0.9500
C2—H2 0.9500 C17—C18 1.393 (4)
C3—C4 1.356 (4) C17—C22 1.398 (3)
C3—H3 0.9500 C18—C19 1.393 (4)
C4—C10 1.411 (4) C18—H18 0.9500
C4—H4 0.9500 C19—C20 1.381 (4)
C5—C6 1.361 (4) C19—H19 0.9500
C5—C10 1.416 (4) C20—C21 1.386 (4)
C5—H5 0.9500 C20—H20 0.9500
C6—C7 1.404 (4) C21—C22 1.382 (4)
C6—H6 0.9500 C21—H21 0.9500
C7—C8 1.378 (3) C22—H22 0.9500
N1—Pt1—P1 85.44 (6) N1—C9—C8 119.3 (2)
N1—Pt1—Cl2 175.93 (6) N1—C9—C10 120.6 (2)
P1—Pt1—Cl2 90.50 (2) C8—C9—C10 120.1 (2)
N1—Pt1—Cl1 94.13 (6) C4—C10—C9 118.5 (2)
P1—Pt1—Cl1 178.80 (2) C4—C10—C5 123.3 (2)
Cl2—Pt1—Cl1 89.93 (2) C9—C10—C5 118.2 (2)
C17—P1—C8 105.88 (11) C16—C11—C12 119.6 (2)
C17—P1—C11 106.45 (12) C16—C11—P1 119.9 (2)
C8—P1—C11 108.71 (12) C12—C11—P1 120.1 (2)
C17—P1—Pt1 116.61 (8) C13—C12—C11 119.8 (3)
C8—P1—Pt1 101.42 (8) C13—C12—H12 120.1
C11—P1—Pt1 116.93 (8) C11—C12—H12 120.1
C2—N1—C9 118.2 (2) C14—C13—C12 120.1 (3)
C2—N1—Pt1 123.48 (17) C14—C13—H13 120.0
C9—N1—Pt1 118.27 (16) C12—C13—H13 120.0
Cl4—C1—Cl3 111.96 (17) C15—C14—C13 120.5 (3)
Cl4—C1—H1A 109.2 C15—C14—H14 119.7
Cl3—C1—H1A 109.2 C13—C14—H14 119.7
Cl4—C1—H1B 109.2 C14—C15—C16 120.3 (3)
Cl3—C1—H1B 109.2 C14—C15—H15 119.8
H1A—C1—H1B 107.9 C16—C15—H15 119.8
N1—C2—C3 123.4 (2) C11—C16—C15 119.6 (3)
N1—C2—H2 118.3 C11—C16—H16 120.2
C3—C2—H2 118.3 C15—C16—H16 120.2
C4—C3—C2 119.5 (3) C18—C17—C22 119.1 (2)
C4—C3—H3 120.3 C18—C17—P1 120.54 (19)
C2—C3—H3 120.3 C22—C17—P1 120.2 (2)
C3—C4—C10 119.7 (3) C17—C18—C19 119.9 (2)
C3—C4—H4 120.1 C17—C18—H18 120.0
C10—C4—H4 120.1 C19—C18—H18 120.0
C6—C5—C10 121.0 (3) C20—C19—C18 120.5 (3)
C6—C5—H5 119.5 C20—C19—H19 119.7
C10—C5—H5 119.5 C18—C19—H19 119.7
C5—C6—C7 120.5 (3) C19—C20—C21 119.6 (3)
C5—C6—H6 119.8 C19—C20—H20 120.2
C7—C6—H6 119.8 C21—C20—H20 120.2
C8—C7—C6 120.8 (3) C22—C21—C20 120.4 (3)
C8—C7—H7 119.6 C22—C21—H21 119.8
C6—C7—H7 119.6 C20—C21—H21 119.8
C7—C8—C9 119.3 (2) C21—C22—C17 120.4 (3)
C7—C8—P1 126.0 (2) C21—C22—H22 119.8
C9—C8—P1 114.57 (17) C17—C22—H22 119.8
C9—N1—C2—C3 1.6 (4) C6—C5—C10—C9 1.0 (4)
Pt1—N1—C2—C3 −177.6 (2) C17—P1—C11—C16 −147.98 (19)
N1—C2—C3—C4 −0.5 (4) C8—P1—C11—C16 −34.3 (2)
C2—C3—C4—C10 −0.7 (4) Pt1—P1—C11—C16 79.7 (2)
C10—C5—C6—C7 −1.4 (4) C17—P1—C11—C12 38.9 (2)
C5—C6—C7—C8 0.0 (4) C8—P1—C11—C12 152.6 (2)
C6—C7—C8—C9 1.6 (4) Pt1—P1—C11—C12 −93.4 (2)
C6—C7—C8—P1 −173.7 (2) C16—C11—C12—C13 0.0 (4)
C17—P1—C8—C7 62.9 (2) P1—C11—C12—C13 173.1 (2)
C11—P1—C8—C7 −51.1 (2) C11—C12—C13—C14 −0.1 (5)
Pt1—P1—C8—C7 −174.9 (2) C12—C13—C14—C15 0.3 (5)
C17—P1—C8—C9 −112.53 (18) C13—C14—C15—C16 −0.3 (4)
C11—P1—C8—C9 133.44 (18) C12—C11—C16—C15 0.0 (4)
Pt1—P1—C8—C9 9.65 (18) P1—C11—C16—C15 −173.17 (19)
C2—N1—C9—C8 177.6 (2) C14—C15—C16—C11 0.2 (4)
Pt1—N1—C9—C8 −3.1 (3) C8—P1—C17—C18 112.0 (2)
C2—N1—C9—C10 −1.5 (3) C11—P1—C17—C18 −132.4 (2)
Pt1—N1—C9—C10 177.82 (17) Pt1—P1—C17—C18 0.1 (2)
C7—C8—C9—N1 179.1 (2) C8—P1—C17—C22 −64.2 (2)
P1—C8—C9—N1 −5.1 (3) C11—P1—C17—C22 51.3 (2)
C7—C8—C9—C10 −1.9 (3) Pt1—P1—C17—C22 −176.13 (19)
P1—C8—C9—C10 173.94 (17) C22—C17—C18—C19 −0.3 (4)
C3—C4—C10—C9 0.8 (4) P1—C17—C18—C19 −176.5 (2)
C3—C4—C10—C5 −178.5 (2) C17—C18—C19—C20 0.2 (4)
N1—C9—C10—C4 0.3 (3) C18—C19—C20—C21 0.4 (5)
C8—C9—C10—C4 −178.7 (2) C19—C20—C21—C22 −1.0 (5)
N1—C9—C10—C5 179.6 (2) C20—C21—C22—C17 0.9 (5)
C8—C9—C10—C5 0.6 (3) C18—C17—C22—C21 −0.2 (4)
C6—C5—C10—C4 −179.7 (3) P1—C17—C22—C21 176.0 (2)

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Crystal data

[RhCl2(C21H16NP)2](PF6)·0.5CH2Cl2·0.5CH4O Z = 2
Mr = 1003.90 F(000) = 1012
Triclinic, P1 Dx = 1.621 Mg m3
a = 9.841 (5) Å Mo Kα radiation, λ = 0.71075 Å
b = 13.825 (6) Å Cell parameters from 15480 reflections
c = 16.167 (8) Å θ = 3.1–27.5°
α = 87.307 (19)° µ = 0.79 mm1
β = 81.80 (2)° T = 200 K
γ = 70.819 (18)° Prism, colorless
V = 2056.2 (17) Å3 0.20 × 0.20 × 0.15 mm

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Data collection

Rigaku R-AXIS RAPID diffractometer 9338 independent reflections
Radiation source: fine-focus sealed tube 7245 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.046
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR.; Rigaku, 1995) h = −12→12
Tmin = 0.848, Tmax = 0.882 k = −17→17
20385 measured reflections l = −20→20

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
9338 reflections (Δ/σ)max = 0.002
605 parameters Δρmax = 0.68 e Å3
20 restraints Δρmin = −1.03 e Å3

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Special details

Experimental. The 31P NMR spectrum of 3 in CD3CN (400 MHz, 22 °C) showed two doublet of doublets resonances at δ 38.66 (JRh–P = 110, JP–P = 21 Hz) and 40.47 (JRh–P = 113 Hz).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rh1 0.81791 (2) 0.88958 (2) 0.68292 (2) 0.02967 (9)
Cl1 0.92494 (8) 0.90055 (6) 0.54278 (4) 0.03774 (17)
Cl2 1.04776 (8) 0.82096 (6) 0.72496 (4) 0.03852 (17)
P1 0.71063 (8) 0.90351 (6) 0.81912 (4) 0.03163 (17)
P2 0.80756 (8) 0.73608 (6) 0.64925 (4) 0.03480 (18)
P3 0.55681 (15) 0.62928 (12) 0.29883 (9) 0.0909 (4)
F1A 0.6674 (12) 0.5251 (7) 0.3142 (9) 0.163 (6) 0.613 (14)
F2A 0.4337 (9) 0.5838 (8) 0.3072 (9) 0.132 (4) 0.613 (14)
F3A 0.601 (2) 0.6117 (9) 0.2058 (4) 0.182 (6) 0.613 (14)
F4A 0.559 (3) 0.633 (2) 0.3936 (6) 0.322 (12) 0.613 (14)
F5A 0.6781 (9) 0.6811 (7) 0.2764 (13) 0.174 (5) 0.613 (14)
F6A 0.4534 (11) 0.7384 (6) 0.2966 (15) 0.211 (8) 0.613 (14)
F1B 0.530 (4) 0.5418 (19) 0.356 (2) 0.300 (16) 0.387 (14)
F2B 0.451 (2) 0.6177 (18) 0.240 (2) 0.208 (10) 0.387 (14)
F3B 0.6695 (18) 0.5392 (19) 0.249 (2) 0.212 (13) 0.387 (14)
F4B 0.449 (2) 0.6981 (12) 0.3668 (10) 0.147 (7) 0.387 (14)
F5B 0.6769 (14) 0.6458 (17) 0.3408 (15) 0.163 (9) 0.387 (14)
F6B 0.522 (3) 0.7243 (11) 0.2443 (9) 0.232 (15) 0.387 (14)
N1 0.8319 (3) 1.03784 (18) 0.71011 (14) 0.0333 (5)
N11 0.6185 (3) 0.9470 (2) 0.64031 (13) 0.0382 (6)
Cl3A 0.3228 (12) 0.6504 (8) 0.8186 (7) 0.322 (5) 0.5
Cl4A 0.3702 (13) 0.5700 (9) 0.9744 (6) 0.407 (8) 0.5
C1A 0.289 (2) 0.5586 (14) 0.8897 (10) 0.307 (11) 0.5
H1A 0.1829 0.5731 0.9058 0.369* 0.5
H1B 0.3314 0.4890 0.8655 0.369* 0.5
O1B 0.3204 (14) 0.7010 (12) 0.8793 (10) 0.213 (8) 0.5
H1F 0.3593 0.7057 0.8302 0.256* 0.5
C1B 0.326 (2) 0.5987 (17) 0.8956 (10) 0.227 (11) 0.5
H1C 0.2739 0.5942 0.9514 0.341* 0.5
H1E 0.4273 0.5547 0.8932 0.341* 0.5
H1D 0.2801 0.5761 0.8537 0.341* 0.5
C2 0.8789 (4) 1.0945 (2) 0.6523 (2) 0.0478 (8)
H2 0.8939 1.0739 0.5956 0.057*
C3 0.9078 (4) 1.1828 (3) 0.6702 (2) 0.0567 (9)
H3 0.9431 1.2203 0.6264 0.068*
C4 0.8852 (4) 1.2148 (3) 0.7497 (2) 0.0571 (10)
H4 0.9020 1.2760 0.7624 0.069*
C5 0.8172 (5) 1.1806 (3) 0.8995 (2) 0.0696 (12)
H5 0.8330 1.2406 0.9159 0.083*
C6 0.7766 (5) 1.1198 (4) 0.9585 (2) 0.0743 (13)
H6 0.7667 1.1368 1.0157 0.089*
C7 0.7488 (4) 1.0322 (3) 0.93688 (19) 0.0542 (9)
H7 0.7205 0.9901 0.9794 0.065*
C8 0.7622 (3) 1.0064 (2) 0.85439 (17) 0.0377 (7)
C9 0.8102 (3) 1.0674 (2) 0.79179 (18) 0.0369 (6)
C10 0.8366 (4) 1.1571 (3) 0.8139 (2) 0.0484 (8)
C12 0.5505 (4) 1.0465 (3) 0.63529 (19) 0.0525 (9)
H12 0.5979 1.0922 0.6490 0.063*
C13 0.4129 (4) 1.0875 (4) 0.6109 (2) 0.0713 (13)
H13 0.3684 1.1596 0.6081 0.086*
C14 0.3440 (4) 1.0250 (4) 0.5916 (2) 0.0761 (15)
H14 0.2496 1.0525 0.5755 0.091*
C15 0.3453 (5) 0.8472 (6) 0.5772 (3) 0.0870 (18)
H15 0.2503 0.8714 0.5618 0.104*
C16 0.4156 (6) 0.7439 (6) 0.5816 (3) 0.098 (2)
H16 0.3687 0.6971 0.5697 0.118*
C17 0.5564 (4) 0.7070 (4) 0.6036 (3) 0.0723 (12)
H17 0.6048 0.6353 0.6055 0.087*
C18 0.6254 (4) 0.7737 (3) 0.62245 (19) 0.0495 (9)
C19 0.5529 (3) 0.8803 (3) 0.61891 (17) 0.0467 (8)
C20 0.4116 (4) 0.9172 (4) 0.59511 (19) 0.0615 (11)
C21 0.5141 (3) 0.9536 (3) 0.82721 (17) 0.0432 (8)
C22 0.4385 (4) 1.0554 (3) 0.8417 (2) 0.0644 (11)
H22 0.4881 1.1015 0.8512 0.077*
C23 0.2882 (6) 1.0909 (5) 0.8423 (3) 0.107 (2)
H23 0.2347 1.1613 0.8522 0.129*
C24 0.2165 (6) 1.0214 (8) 0.8282 (3) 0.125 (3)
H24 0.1141 1.0447 0.8291 0.151*
C25 0.2927 (6) 0.9224 (7) 0.8134 (3) 0.104 (2)
H25 0.2442 0.8760 0.8030 0.125*
C26 0.4391 (4) 0.8879 (4) 0.8133 (2) 0.0639 (11)
H26 0.4911 0.8174 0.8035 0.077*
C27 0.7478 (4) 0.8059 (2) 0.89991 (17) 0.0428 (7)
C28 0.6348 (5) 0.7924 (3) 0.9570 (2) 0.0645 (11)
H28 0.5373 0.8325 0.9520 0.077*
C29 0.6633 (6) 0.7216 (4) 1.0204 (3) 0.0891 (16)
H29 0.5859 0.7139 1.0596 0.107*
C30 0.8036 (7) 0.6625 (4) 1.0267 (3) 0.1008 (19)
H30 0.8233 0.6127 1.0699 0.121*
C31 0.9143 (6) 0.6745 (4) 0.9719 (3) 0.102 (2)
H31 1.0112 0.6331 0.9769 0.122*
C32 0.8874 (5) 0.7475 (4) 0.9078 (2) 0.0761 (14)
H32 0.9659 0.7562 0.8701 0.091*
C33 0.9307 (3) 0.6735 (2) 0.55799 (18) 0.0373 (7)
C34 1.0796 (3) 0.6486 (2) 0.55612 (19) 0.0437 (7)
H34 1.1176 0.6639 0.6028 0.052*
C35 1.1731 (4) 0.6015 (3) 0.4863 (2) 0.0505 (8)
H35 1.2750 0.5846 0.4852 0.061*
C36 1.1187 (4) 0.5794 (2) 0.4188 (2) 0.0487 (8)
H36 1.1828 0.5464 0.3713 0.058*
C37 0.9725 (4) 0.6047 (2) 0.41995 (19) 0.0481 (8)
H37 0.9356 0.5894 0.3728 0.058*
C38 0.8767 (4) 0.6523 (2) 0.48863 (18) 0.0427 (7)
H38 0.7750 0.6703 0.4883 0.051*
C39 0.8269 (4) 0.6356 (2) 0.72758 (18) 0.0407 (7)
C40 0.7092 (5) 0.6125 (3) 0.7699 (3) 0.0689 (12)
H40 0.6136 0.6507 0.7595 0.083*
C41 0.7312 (6) 0.5334 (3) 0.8277 (3) 0.0844 (15)
H41 0.6498 0.5179 0.8565 0.101*
C42 0.8658 (6) 0.4779 (3) 0.8439 (2) 0.0714 (12)
H42 0.8781 0.4249 0.8845 0.086*
C43 0.9853 (6) 0.4982 (3) 0.8016 (2) 0.0724 (12)
H43 1.0802 0.4584 0.8121 0.087*
C44 0.9657 (4) 0.5771 (3) 0.7437 (2) 0.0597 (10)
H44 1.0479 0.5915 0.7147 0.072*

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.03129 (14) 0.03778 (14) 0.02306 (12) −0.01406 (10) −0.00624 (8) −0.00226 (9)
Cl1 0.0437 (4) 0.0465 (4) 0.0252 (3) −0.0185 (3) −0.0016 (3) −0.0013 (3)
Cl2 0.0332 (4) 0.0482 (4) 0.0393 (4) −0.0168 (3) −0.0119 (3) −0.0035 (3)
P1 0.0335 (4) 0.0417 (4) 0.0227 (3) −0.0152 (3) −0.0058 (3) −0.0020 (3)
P2 0.0358 (4) 0.0452 (4) 0.0305 (4) −0.0218 (4) −0.0038 (3) −0.0078 (3)
P3 0.0619 (8) 0.1049 (11) 0.0944 (10) −0.0099 (8) −0.0086 (7) −0.0199 (9)
F1A 0.099 (7) 0.145 (8) 0.206 (11) 0.007 (6) −0.030 (8) 0.076 (9)
F2A 0.072 (4) 0.155 (8) 0.176 (9) −0.058 (5) 0.023 (5) −0.025 (7)
F3A 0.281 (16) 0.160 (11) 0.067 (4) −0.040 (10) 0.018 (6) 0.022 (5)
F4A 0.30 (2) 0.51 (4) 0.108 (8) −0.04 (3) −0.068 (11) −0.103 (13)
F5A 0.106 (7) 0.117 (6) 0.290 (16) −0.033 (5) −0.008 (8) 0.011 (9)
F6A 0.088 (6) 0.112 (7) 0.42 (2) 0.032 (5) −0.092 (10) −0.112 (12)
F1B 0.28 (4) 0.20 (2) 0.42 (4) −0.11 (2) −0.03 (4) 0.16 (3)
F2B 0.164 (18) 0.21 (2) 0.26 (2) −0.038 (13) −0.078 (18) −0.12 (2)
F3B 0.115 (14) 0.20 (2) 0.30 (3) −0.040 (14) 0.08 (2) −0.14 (2)
F4B 0.140 (13) 0.143 (12) 0.121 (11) −0.015 (9) 0.044 (9) −0.052 (8)
F5B 0.079 (9) 0.22 (2) 0.184 (17) −0.009 (10) −0.078 (11) −0.073 (14)
F6B 0.43 (4) 0.145 (17) 0.110 (10) −0.11 (2) −0.001 (15) 0.079 (12)
N1 0.0396 (14) 0.0320 (12) 0.0291 (11) −0.0126 (11) −0.0045 (10) −0.0033 (10)
N11 0.0332 (14) 0.0595 (16) 0.0202 (11) −0.0122 (12) −0.0057 (9) 0.0011 (11)
Cl3A 0.302 (11) 0.251 (10) 0.445 (14) −0.111 (8) −0.131 (12) 0.083 (10)
Cl4A 0.480 (19) 0.444 (17) 0.221 (8) −0.130 (12) 0.146 (10) 0.022 (9)
C1A 0.35 (3) 0.218 (19) 0.33 (2) −0.15 (2) 0.233 (17) −0.174 (15)
O1B 0.118 (9) 0.287 (16) 0.257 (16) −0.110 (10) 0.061 (10) −0.168 (13)
C1B 0.26 (2) 0.48 (3) 0.114 (11) −0.33 (2) −0.086 (12) 0.119 (16)
C2 0.067 (2) 0.0415 (17) 0.0344 (15) −0.0181 (16) −0.0036 (15) 0.0000 (14)
C3 0.080 (3) 0.0396 (18) 0.052 (2) −0.0268 (18) 0.0016 (18) 0.0005 (16)
C4 0.075 (3) 0.0420 (18) 0.060 (2) −0.0295 (19) −0.0005 (19) −0.0092 (17)
C5 0.100 (3) 0.072 (3) 0.053 (2) −0.054 (3) 0.008 (2) −0.027 (2)
C6 0.111 (4) 0.093 (3) 0.0392 (19) −0.064 (3) 0.006 (2) −0.026 (2)
C7 0.070 (2) 0.071 (2) 0.0324 (15) −0.040 (2) 0.0014 (15) −0.0128 (16)
C8 0.0358 (16) 0.0489 (17) 0.0311 (14) −0.0173 (14) −0.0017 (12) −0.0085 (13)
C9 0.0331 (16) 0.0410 (16) 0.0358 (15) −0.0096 (13) −0.0041 (12) −0.0090 (13)
C10 0.056 (2) 0.0469 (19) 0.0454 (18) −0.0220 (17) 0.0004 (15) −0.0139 (15)
C12 0.047 (2) 0.067 (2) 0.0326 (16) −0.0030 (17) −0.0095 (14) 0.0074 (16)
C13 0.046 (2) 0.100 (3) 0.044 (2) 0.009 (2) −0.0103 (17) 0.015 (2)
C14 0.034 (2) 0.142 (5) 0.0343 (18) −0.003 (3) −0.0126 (15) 0.010 (2)
C15 0.038 (2) 0.180 (6) 0.051 (2) −0.044 (3) −0.0051 (18) −0.029 (3)
C16 0.064 (3) 0.184 (6) 0.077 (3) −0.079 (4) −0.001 (2) −0.049 (4)
C17 0.054 (2) 0.106 (3) 0.075 (3) −0.048 (2) 0.000 (2) −0.036 (2)
C18 0.0394 (19) 0.082 (3) 0.0365 (16) −0.0320 (18) −0.0013 (13) −0.0200 (16)
C19 0.0312 (17) 0.087 (3) 0.0233 (13) −0.0201 (17) −0.0037 (11) −0.0091 (15)
C20 0.0347 (19) 0.123 (4) 0.0258 (15) −0.023 (2) −0.0073 (13) −0.0020 (19)
C21 0.0369 (17) 0.071 (2) 0.0236 (13) −0.0205 (16) −0.0054 (12) 0.0023 (14)
C22 0.046 (2) 0.084 (3) 0.051 (2) −0.005 (2) −0.0067 (17) 0.006 (2)
C23 0.058 (3) 0.150 (6) 0.069 (3) 0.024 (3) −0.003 (2) 0.012 (3)
C24 0.034 (3) 0.271 (10) 0.056 (3) −0.029 (4) −0.011 (2) 0.009 (4)
C25 0.050 (3) 0.241 (8) 0.044 (2) −0.075 (4) −0.003 (2) −0.022 (3)
C26 0.051 (2) 0.120 (4) 0.0341 (16) −0.047 (2) −0.0011 (15) −0.0148 (19)
C27 0.059 (2) 0.0453 (17) 0.0256 (13) −0.0170 (16) −0.0089 (13) −0.0009 (13)
C28 0.075 (3) 0.074 (3) 0.0450 (19) −0.028 (2) −0.0082 (18) 0.0157 (19)
C29 0.124 (5) 0.091 (4) 0.048 (2) −0.037 (3) −0.001 (3) 0.025 (2)
C30 0.149 (5) 0.081 (3) 0.047 (2) −0.008 (3) −0.005 (3) 0.021 (2)
C31 0.099 (4) 0.110 (4) 0.051 (2) 0.026 (3) −0.012 (3) 0.017 (3)
C32 0.068 (3) 0.101 (3) 0.0350 (18) 0.003 (2) −0.0040 (18) 0.014 (2)
C33 0.0431 (18) 0.0379 (15) 0.0359 (15) −0.0207 (14) −0.0012 (13) −0.0082 (13)
C34 0.0431 (19) 0.0511 (19) 0.0405 (16) −0.0209 (15) 0.0000 (13) −0.0132 (14)
C35 0.050 (2) 0.0480 (19) 0.054 (2) −0.0198 (16) 0.0054 (16) −0.0127 (16)
C36 0.068 (2) 0.0366 (16) 0.0392 (16) −0.0194 (16) 0.0109 (16) −0.0116 (14)
C37 0.072 (3) 0.0428 (17) 0.0344 (15) −0.0260 (17) −0.0039 (15) −0.0079 (14)
C38 0.055 (2) 0.0463 (17) 0.0341 (15) −0.0263 (16) −0.0058 (14) −0.0066 (13)
C39 0.054 (2) 0.0420 (17) 0.0341 (15) −0.0283 (15) 0.0012 (13) −0.0080 (13)
C40 0.066 (3) 0.052 (2) 0.083 (3) −0.023 (2) 0.014 (2) 0.008 (2)
C41 0.093 (4) 0.070 (3) 0.087 (3) −0.040 (3) 0.027 (3) 0.011 (3)
C42 0.118 (4) 0.055 (2) 0.049 (2) −0.042 (3) −0.004 (2) 0.0045 (19)
C43 0.099 (4) 0.081 (3) 0.050 (2) −0.042 (3) −0.025 (2) 0.017 (2)
C44 0.067 (3) 0.083 (3) 0.0443 (19) −0.042 (2) −0.0161 (17) 0.0071 (19)

(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate . Geometric parameters (Å, º)

Rh1—N11 2.065 (2) C14—C20 1.420 (7)
Rh1—N1 2.168 (2) C14—H14 0.9500
Rh1—P2 2.2531 (8) C15—C16 1.370 (8)
Rh1—P1 2.2897 (7) C15—C20 1.392 (7)
Rh1—Cl2 2.3338 (7) C15—H15 0.9500
Rh1—Cl1 2.3787 (6) C16—C17 1.402 (7)
P1—C8 1.800 (3) C16—H16 0.9500
P1—C21 1.815 (3) C17—C18 1.378 (5)
P1—C27 1.818 (3) C17—H17 0.9500
P2—C18 1.806 (3) C18—C19 1.413 (5)
P2—C39 1.816 (3) C19—C20 1.418 (5)
P2—C33 1.821 (3) C21—C22 1.372 (5)
P3—F3A 1.513 (6) C21—C26 1.389 (5)
P3—F6B 1.518 (8) C22—C23 1.396 (6)
P3—F6A 1.519 (7) C22—H22 0.9500
P3—F2A 1.526 (6) C23—C24 1.409 (10)
P3—F5B 1.526 (8) C23—H23 0.9500
P3—F1A 1.528 (6) C24—C25 1.341 (9)
P3—F4B 1.529 (8) C24—H24 0.9500
P3—F3B 1.538 (8) C25—C26 1.360 (6)
P3—F4A 1.539 (7) C25—H25 0.9500
P3—F2B 1.552 (8) C26—H26 0.9500
P3—F1B 1.558 (9) C27—C32 1.367 (5)
P3—F5A 1.576 (7) C27—C28 1.397 (5)
N1—C2 1.322 (4) C28—C29 1.376 (5)
N1—C9 1.367 (4) C28—H28 0.9500
N11—C12 1.321 (4) C29—C30 1.370 (7)
N11—C19 1.368 (4) C29—H29 0.9500
Cl3A—C1A 1.754 (10) C30—C31 1.353 (7)
Cl4A—C1A 1.721 (10) C30—H30 0.9500
C1A—H1A 0.9900 C31—C32 1.402 (5)
C1A—H1B 0.9900 C31—H31 0.9500
O1B—C1B 1.412 (16) C32—H32 0.9500
O1B—H1F 0.8400 C33—C34 1.387 (4)
C1B—H1C 0.9800 C33—C38 1.388 (4)
C1B—H1E 0.9800 C34—C35 1.387 (4)
C1B—H1D 0.9800 C34—H34 0.9500
C2—C3 1.392 (5) C35—C36 1.370 (5)
C2—H2 0.9500 C35—H35 0.9500
C3—C4 1.344 (5) C36—C37 1.361 (5)
C3—H3 0.9500 C36—H36 0.9500
C4—C10 1.405 (5) C37—C38 1.385 (4)
C4—H4 0.9500 C37—H37 0.9500
C5—C6 1.346 (5) C38—H38 0.9500
C5—C10 1.407 (5) C39—C40 1.381 (5)
C5—H5 0.9500 C39—C44 1.395 (5)
C6—C7 1.396 (5) C40—C41 1.385 (6)
C6—H6 0.9500 C40—H40 0.9500
C7—C8 1.373 (4) C41—C42 1.351 (6)
C7—H7 0.9500 C41—H41 0.9500
C8—C9 1.416 (4) C42—C43 1.377 (6)
C9—C10 1.418 (4) C42—H42 0.9500
C12—C13 1.392 (5) C43—C44 1.387 (5)
C12—H12 0.9500 C43—H43 0.9500
C13—C14 1.332 (7) C44—H44 0.9500
C13—H13 0.9500
N11—Rh1—N1 95.37 (10) C4—C10—C9 118.3 (3)
N11—Rh1—P2 84.53 (8) C5—C10—C9 117.6 (3)
N1—Rh1—P2 177.65 (6) N11—C12—C13 123.2 (4)
N11—Rh1—P1 91.56 (6) N11—C12—H12 118.4
N1—Rh1—P1 81.81 (6) C13—C12—H12 118.4
P2—Rh1—P1 100.55 (3) C14—C13—C12 119.5 (4)
N11—Rh1—Cl2 177.29 (7) C14—C13—H13 120.2
N1—Rh1—Cl2 86.06 (7) C12—C13—H13 120.2
P2—Rh1—Cl2 93.94 (3) C13—C14—C20 120.1 (4)
P1—Rh1—Cl2 90.92 (3) C13—C14—H14 120.0
N11—Rh1—Cl1 87.29 (6) C20—C14—H14 120.0
N1—Rh1—Cl1 90.19 (6) C16—C15—C20 120.8 (4)
P2—Rh1—Cl1 87.45 (3) C16—C15—H15 119.6
P1—Rh1—Cl1 171.78 (3) C20—C15—H15 119.6
Cl2—Rh1—Cl1 90.41 (3) C15—C16—C17 120.3 (4)
C8—P1—C21 104.72 (15) C15—C16—H16 119.8
C8—P1—C27 105.37 (14) C17—C16—H16 119.8
C21—P1—C27 104.93 (15) C18—C17—C16 120.7 (5)
C8—P1—Rh1 100.60 (9) C18—C17—H17 119.6
C21—P1—Rh1 111.85 (9) C16—C17—H17 119.6
C27—P1—Rh1 127.10 (11) C17—C18—C19 119.2 (4)
C18—P2—C39 108.44 (16) C17—C18—P2 125.0 (3)
C18—P2—C33 107.38 (14) C19—C18—P2 115.7 (2)
C39—P2—C33 104.33 (14) N11—C19—C18 119.6 (3)
C18—P2—Rh1 100.25 (12) N11—C19—C20 120.5 (4)
C39—P2—Rh1 119.73 (10) C18—C19—C20 119.8 (3)
C33—P2—Rh1 116.00 (9) C15—C20—C19 119.1 (5)
F3A—P3—F6A 98.7 (10) C15—C20—C14 123.3 (4)
F3A—P3—F2A 96.5 (6) C19—C20—C14 117.6 (4)
F6A—P3—F2A 92.8 (7) C22—C21—C26 119.1 (4)
F6B—P3—F5B 99.3 (12) C22—C21—P1 122.0 (3)
F3A—P3—F1A 89.1 (5) C26—C21—P1 118.8 (3)
F6A—P3—F1A 170.5 (9) C21—C22—C23 119.6 (5)
F2A—P3—F1A 91.7 (7) C21—C22—H22 120.2
F6B—P3—F4B 85.3 (8) C23—C22—H22 120.2
F5B—P3—F4B 87.0 (10) C22—C23—C24 119.4 (6)
F6B—P3—F3B 109.7 (17) C22—C23—H23 120.3
F5B—P3—F3B 89.9 (12) C24—C23—H23 120.3
F4B—P3—F3B 165.0 (17) C25—C24—C23 120.0 (5)
F3A—P3—F4A 163.5 (12) C25—C24—H24 120.0
F6A—P3—F4A 93.0 (9) C23—C24—H24 120.0
F2A—P3—F4A 94.5 (11) C24—C25—C26 120.5 (6)
F1A—P3—F4A 78.3 (11) C24—C25—H25 119.8
F6B—P3—F2B 73.3 (16) C26—C25—H25 119.8
F5B—P3—F2B 169.0 (18) C25—C26—C21 121.4 (5)
F4B—P3—F2B 100.3 (14) C25—C26—H26 119.3
F3B—P3—F2B 85.1 (12) C21—C26—H26 119.3
F6B—P3—F1B 158.1 (19) C32—C27—C28 119.0 (3)
F5B—P3—F1B 98.6 (18) C32—C27—P1 120.4 (3)
F4B—P3—F1B 83.2 (15) C28—C27—P1 120.6 (3)
F3B—P3—F1B 82.8 (16) C29—C28—C27 120.7 (4)
F2B—P3—F1B 90.6 (15) C29—C28—H28 119.7
F3A—P3—F5A 76.1 (9) C27—C28—H28 119.7
F6A—P3—F5A 84.0 (6) C30—C29—C28 119.7 (4)
F2A—P3—F5A 171.3 (9) C30—C29—H29 120.1
F1A—P3—F5A 92.7 (7) C28—C29—H29 120.1
F4A—P3—F5A 93.7 (10) C31—C30—C29 120.3 (4)
C2—N1—C9 118.3 (3) C31—C30—H30 119.8
C2—N1—Rh1 122.6 (2) C29—C30—H30 119.8
C9—N1—Rh1 118.45 (18) C30—C31—C32 120.7 (5)
C12—N11—C19 119.0 (3) C30—C31—H31 119.7
C12—N11—Rh1 121.9 (2) C32—C31—H31 119.7
C19—N11—Rh1 119.2 (2) C27—C32—C31 119.6 (4)
Cl4A—C1A—Cl3A 104.2 (8) C27—C32—H32 120.2
Cl4A—C1A—H1A 110.9 C31—C32—H32 120.2
Cl3A—C1A—H1A 110.9 C34—C33—C38 119.2 (3)
Cl4A—C1A—H1B 110.9 C34—C33—P2 120.3 (2)
Cl3A—C1A—H1B 110.9 C38—C33—P2 120.5 (2)
H1A—C1A—H1B 108.9 C33—C34—C35 120.2 (3)
C1B—O1B—H1F 109.5 C33—C34—H34 119.9
O1B—C1B—H1C 109.5 C35—C34—H34 119.9
O1B—C1B—H1E 109.5 C36—C35—C34 120.1 (3)
H1C—C1B—H1E 109.5 C36—C35—H35 120.0
O1B—C1B—H1D 109.5 C34—C35—H35 120.0
H1C—C1B—H1D 109.5 C37—C36—C35 119.9 (3)
H1E—C1B—H1D 109.5 C37—C36—H36 120.0
N1—C2—C3 123.5 (3) C35—C36—H36 120.0
N1—C2—H2 118.2 C36—C37—C38 121.2 (3)
C3—C2—H2 118.2 C36—C37—H37 119.4
C4—C3—C2 119.5 (3) C38—C37—H37 119.4
C4—C3—H3 120.2 C37—C38—C33 119.4 (3)
C2—C3—H3 120.2 C37—C38—H38 120.3
C3—C4—C10 119.5 (3) C33—C38—H38 120.3
C3—C4—H4 120.2 C40—C39—C44 118.6 (3)
C10—C4—H4 120.2 C40—C39—P2 122.4 (3)
C6—C5—C10 121.5 (3) C44—C39—P2 119.0 (2)
C6—C5—H5 119.3 C39—C40—C41 119.7 (4)
C10—C5—H5 119.3 C39—C40—H40 120.2
C5—C6—C7 121.1 (3) C41—C40—H40 120.2
C5—C6—H6 119.5 C42—C41—C40 121.5 (4)
C7—C6—H6 119.5 C42—C41—H41 119.3
C8—C7—C6 120.3 (3) C40—C41—H41 119.3
C8—C7—H7 119.9 C41—C42—C43 120.1 (4)
C6—C7—H7 119.9 C41—C42—H42 120.0
C7—C8—C9 119.2 (3) C43—C42—H42 120.0
C7—C8—P1 124.0 (2) C42—C43—C44 119.4 (4)
C9—C8—P1 116.7 (2) C42—C43—H43 120.3
N1—C9—C8 118.9 (3) C44—C43—H43 120.3
N1—C9—C10 120.8 (3) C43—C44—C39 120.8 (4)
C8—C9—C10 120.3 (3) C43—C44—H44 119.6
C4—C10—C5 124.1 (3) C39—C44—H44 119.6
C9—N1—C2—C3 0.1 (5) C13—C14—C20—C15 178.9 (3)
Rh1—N1—C2—C3 −170.8 (3) C13—C14—C20—C19 −0.5 (5)
N1—C2—C3—C4 −1.2 (6) C8—P1—C21—C22 11.2 (3)
C2—C3—C4—C10 1.7 (6) C27—P1—C21—C22 121.9 (3)
C10—C5—C6—C7 −1.6 (8) Rh1—P1—C21—C22 −96.9 (3)
C5—C6—C7—C8 −0.1 (7) C8—P1—C21—C26 −172.8 (2)
C6—C7—C8—C9 2.6 (6) C27—P1—C21—C26 −62.0 (3)
C6—C7—C8—P1 −173.1 (3) Rh1—P1—C21—C26 79.2 (2)
C21—P1—C8—C7 77.0 (3) C26—C21—C22—C23 0.1 (5)
C27—P1—C8—C7 −33.4 (3) P1—C21—C22—C23 176.2 (3)
Rh1—P1—C8—C7 −166.8 (3) C21—C22—C23—C24 0.1 (6)
C21—P1—C8—C9 −98.7 (2) C22—C23—C24—C25 −0.7 (8)
C27—P1—C8—C9 150.9 (2) C23—C24—C25—C26 1.1 (8)
Rh1—P1—C8—C9 17.4 (3) C24—C25—C26—C21 −0.8 (7)
C2—N1—C9—C8 −179.0 (3) C22—C21—C26—C25 0.2 (5)
Rh1—N1—C9—C8 −7.6 (4) P1—C21—C26—C25 −175.9 (3)
C2—N1—C9—C10 0.4 (5) C8—P1—C27—C32 −73.9 (3)
Rh1—N1—C9—C10 171.7 (2) C21—P1—C27—C32 175.8 (3)
C7—C8—C9—N1 176.0 (3) Rh1—P1—C27—C32 42.6 (4)
P1—C8—C9—N1 −8.1 (4) C8—P1—C27—C28 103.4 (3)
C7—C8—C9—C10 −3.4 (5) C21—P1—C27—C28 −6.9 (3)
P1—C8—C9—C10 172.6 (3) Rh1—P1—C27—C28 −140.1 (3)
C3—C4—C10—C5 176.4 (4) C32—C27—C28—C29 0.2 (6)
C3—C4—C10—C9 −1.2 (6) P1—C27—C28—C29 −177.2 (4)
C6—C5—C10—C4 −176.9 (4) C27—C28—C29—C30 −1.2 (7)
C6—C5—C10—C9 0.7 (7) C28—C29—C30—C31 1.1 (9)
N1—C9—C10—C4 0.2 (5) C29—C30—C31—C32 0.0 (9)
C8—C9—C10—C4 179.5 (3) C28—C27—C32—C31 0.9 (7)
N1—C9—C10—C5 −177.6 (3) P1—C27—C32—C31 178.3 (4)
C8—C9—C10—C5 1.7 (5) C30—C31—C32—C27 −1.0 (8)
C19—N11—C12—C13 1.5 (4) C18—P2—C33—C34 171.2 (3)
Rh1—N11—C12—C13 −176.6 (2) C39—P2—C33—C34 −73.8 (3)
N11—C12—C13—C14 0.2 (5) Rh1—P2—C33—C34 60.1 (3)
C12—C13—C14—C20 −0.7 (5) C18—P2—C33—C38 −7.1 (3)
C20—C15—C16—C17 −0.6 (7) C39—P2—C33—C38 107.8 (3)
C15—C16—C17—C18 1.1 (7) Rh1—P2—C33—C38 −118.2 (2)
C16—C17—C18—C19 −0.4 (5) C38—C33—C34—C35 −1.2 (5)
C16—C17—C18—P2 −178.5 (3) P2—C33—C34—C35 −179.6 (2)
C39—P2—C18—C17 −47.8 (3) C33—C34—C35—C36 0.0 (5)
C33—P2—C18—C17 64.4 (3) C34—C35—C36—C37 0.8 (5)
Rh1—P2—C18—C17 −174.1 (3) C35—C36—C37—C38 −0.4 (5)
C39—P2—C18—C19 134.0 (2) C36—C37—C38—C33 −0.8 (5)
C33—P2—C18—C19 −113.8 (2) C34—C33—C38—C37 1.6 (4)
Rh1—P2—C18—C19 7.8 (2) P2—C33—C38—C37 180.0 (2)
C12—N11—C19—C18 178.8 (3) C18—P2—C39—C40 −13.0 (3)
Rh1—N11—C19—C18 −3.0 (3) C33—P2—C39—C40 −127.2 (3)
C12—N11—C19—C20 −2.7 (4) Rh1—P2—C39—C40 100.9 (3)
Rh1—N11—C19—C20 175.5 (2) C18—P2—C39—C44 164.7 (3)
C17—C18—C19—N11 177.8 (3) C33—P2—C39—C44 50.5 (3)
P2—C18—C19—N11 −4.0 (4) Rh1—P2—C39—C44 −81.3 (3)
C17—C18—C19—C20 −0.8 (5) C44—C39—C40—C41 0.8 (6)
P2—C18—C19—C20 177.5 (2) P2—C39—C40—C41 178.6 (3)
C16—C15—C20—C19 −0.6 (6) C39—C40—C41—C42 0.1 (7)
C16—C15—C20—C14 −180.0 (4) C40—C41—C42—C43 −1.2 (7)
N11—C19—C20—C15 −177.2 (3) C41—C42—C43—C44 1.3 (7)
C18—C19—C20—C15 1.3 (4) C42—C43—C44—C39 −0.3 (6)
N11—C19—C20—C14 2.2 (4) C40—C39—C44—C43 −0.7 (6)
C18—C19—C20—C14 −179.3 (3) P2—C39—C44—C43 −178.5 (3)

References

  1. Aguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, F., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419–5426. [DOI] [PubMed]
  2. Bastanov, A. S., Bryant, D. E., Kilner, M. & Neletin, I. S. (2009). Private communication (refcode OBAWIZ). CCDC, Cambridge, England.
  3. Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  4. Canovese, L., Visentin, F., Santo, C., Chessa, G. & Bertolasi, V. (2010). Organometallics, 29, 3027–3038.
  5. Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193–195, 499–556.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Feltham, R. D. & Metzger, H. G. (1971). J. Organomet. Chem. 33, 347–355.
  8. Galsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701–1707.
  9. Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39–47.
  10. Hudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391–1394.
  11. Issleib, K. & Hörnig, K. (1972). Z. Anorg. Allg. Chem. 389, 263–268.
  12. Monkowius, U., Zabel, M., Fleck, M. & Yersin, H. (2009). Z. Naturforsch. Teil B, 64, 1513–1524.
  13. Nag, S., Cibian, M. & Hanan, G. S. (2010). Acta Cryst. E66, o2847. [DOI] [PMC free article] [PubMed]
  14. Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388–9391. [DOI] [PubMed]
  15. Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  16. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  17. Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  18. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  19. Salem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581–586.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Sun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474–1478.
  23. Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876.
  24. Suzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287–2293.
  25. Suzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S. & Kato, M. (2002). Bull. Chem. Soc. Jpn, 75, 2433–2439.
  26. Suzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981–3987. [DOI] [PubMed]
  27. Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12.
  28. Wehman, P., van Donge, H. M. A., Hagos, A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1997). J. Organomet. Chem. 535, 183–193.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989015006076/is5392sup1.cif

e-71-00447-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015006076/is53921sup2.hkl

e-71-00447-1sup2.hkl (235KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015006076/is53922sup3.hkl

e-71-00447-2sup3.hkl (278.6KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989015006076/is53923sup4.hkl

e-71-00447-3sup4.hkl (511.4KB, hkl)

CCDC references: 1056041, 1056040, 1056039

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES