Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 2;71(Pt 5):o272–o273. doi: 10.1107/S2056989015006039

Crystal structure of 2-(1-methyl­eth­yl)-1,3-thia­zolo[4,5-b]pyridine

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Saud A Alanazi a, Benson M Kariuki b,
PMCID: PMC4420086  PMID: 25995900

Abstract

In the title mol­ecule, C9H10N2S, one of the methyl groups is almost co-planar with the thia­zolo­pyridine rings with a deviation of 0.311 (3) Å from the least-squares plane of the thia­zolo­pyridine group. In the crystal, weak C—H⋯N hydrogen-bonding inter­actions lead to the formation of chains along [011].

Keywords: crystal structure, thia­zolo­pyridine, hydrogen bonding

Related literature  

For related compounds, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Thomae et al. (2008); Rao et al. (2009); Lee et al. (2010); Luo et al. (2015). For the X-ray crystal structures of related compounds, see: Yu et al. (2007); El-Hiti et al. (2014).graphic file with name e-71-0o272-scheme1.jpg

Experimental  

Crystal data  

  • C9H10N2S

  • M r = 178.25

  • Orthorhombic, Inline graphic

  • a = 9.6376 (2) Å

  • b = 10.1602 (2) Å

  • c = 8.9254 (2) Å

  • V = 873.98 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.81 mm−1

  • T = 150 K

  • 0.23 × 0.20 × 0.14 mm

Data collection  

  • Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.897, T max = 0.940

  • 2848 measured reflections

  • 1366 independent reflections

  • 1351 reflections with I > 2σ(I)

  • R int = 0.012

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.057

  • S = 1.08

  • 1366 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015006039/zs2329sup1.cif

e-71-0o272-sup1.cif (117.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006039/zs2329Isup2.hkl

e-71-0o272-Isup2.hkl (75.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006039/zs2329Isup3.cml

9 10 2 . DOI: 10.1107/S2056989015006039/zs2329fig1.tif

A mol­ecule of C9H10N2S with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

c . DOI: 10.1107/S2056989015006039/zs2329fig2.tif

Crystal structure packing viewed down the c axis with C—H⋯N inter­actions shown as dotted lines.

CCDC reference: 1056012

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4N1i 0.95 2.51 3.391(2) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research and to Cardiff University for continued support.

supplementary crystallographic information

S1. Chemical context

Thia­zolo­pyridines have been efficiently synthesized and in high yield using different synthetic procedures (Smith et al., 1994, 1995; El-Hiti, 2003; Johnson et al., 2006; Thomae et al., 2008; Rao et al., 2009; Lee et al., 2010; Luo et al., 2015). During our continuing research towards the development of novel synthetic routes for the production of heterocyclic compounds, we have synthesised the title compound 2-(methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (Smith et al., 1995). The X-ray structures for related compounds have been reported (Yu et al., 2007; El-Hiti et al., 2014).

S2. Structural commentary

The asymmetric unit of the title compound consists of a single molecule of C9H10N2S (Fig. 1). In the molecule, one of the methyl groups is almost co-planar with the thia­zolo­pyridine ring. The deviations from the least-squares plane of the thia­zolo­pyridine group are 0.311 (3)Å and 1.269 (3)Å for C8 and C9 respectively, corresponding to torsion angles N1—C1—C7—C8 and N1—C1—C7—C9 of 169.47 (19) and -65.9 (3)°, respectively.

Weak C—H···N hydrogen-bonding inter­actions occur in the structure to form chains along [011] (Fig. 2, Table 1). No π–π inter­actions are observed in the crystal structure.

S3. Synthesis and crystallization

2-(1-Methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 98% yield from acid hydrolysis (HCl, 5 M) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(1-methyl­ethyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995). Crystallization of the crude product from di­ethyl ether gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were consistent with those reported previously (Smith et al., 1995).

S4. Refinement details

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. Although not of relevance with this achiral compound, the absolute structure factor (Flack, 1983) was determined as 0.031 (11) for 434 Friedel pairs.

Figures

Fig. 1.

Fig. 1.

A molecule of C9H10N2S with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

Fig. 2.

Fig. 2.

Crystal structure packing viewed down the c axis with C—H···N interactions shown as dotted lines.

Crystal data

C9H10N2S Dx = 1.355 Mg m3
Mr = 178.25 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21 Cell parameters from 2276 reflections
a = 9.6376 (2) Å θ = 6.3–73.8°
b = 10.1602 (2) Å µ = 2.81 mm1
c = 8.9254 (2) Å T = 150 K
V = 873.98 (3) Å3 Block, colourless
Z = 4 0.23 × 0.20 × 0.14 mm
F(000) = 376

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer 1366 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source 1351 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.012
Detector resolution: 10.5082 pixels mm-1 θmax = 74.0°, θmin = 6.3°
ω scans h = −11→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −12→8
Tmin = 0.897, Tmax = 0.940 l = −10→10
2848 measured reflections

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.1081P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
1366 reflections Δρmax = 0.19 e Å3
111 parameters Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.13501 (18) 0.59856 (18) 0.8660 (2) 0.0227 (4)
C2 0.23657 (17) 0.67547 (17) 1.1015 (2) 0.0208 (3)
C3 0.29550 (18) 0.56187 (17) 1.0365 (2) 0.0203 (3)
C4 0.2865 (2) 0.72261 (17) 1.2365 (3) 0.0257 (4)
H4 0.2483 0.7985 1.2829 0.031*
C5 0.39534 (19) 0.6532 (2) 1.3007 (3) 0.0279 (4)
H5 0.4342 0.6813 1.3931 0.034*
C6 0.44760 (19) 0.54145 (19) 1.2283 (3) 0.0273 (4)
H6 0.5220 0.4959 1.2752 0.033*
C7 0.05003 (18) 0.57871 (19) 0.7259 (3) 0.0271 (4)
H7 0.0177 0.4852 0.7251 0.033*
C8 −0.0783 (2) 0.6663 (2) 0.7204 (3) 0.0365 (5)
H8A −0.1375 0.6475 0.8070 0.055*
H8B −0.1299 0.6488 0.6279 0.055*
H8C −0.0499 0.7589 0.7227 0.055*
C9 0.1411 (2) 0.5992 (3) 0.5875 (3) 0.0421 (6)
H9A 0.1666 0.6923 0.5796 0.063*
H9B 0.0897 0.5727 0.4977 0.063*
H9C 0.2253 0.5457 0.5966 0.063*
N1 0.23563 (16) 0.52156 (16) 0.9037 (2) 0.0241 (3)
N2 0.40055 (14) 0.49434 (16) 1.0985 (2) 0.0254 (4)
S1 0.10273 (4) 0.73079 (4) 0.98822 (7) 0.02515 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0205 (8) 0.0253 (8) 0.0224 (10) −0.0013 (7) 0.0032 (7) −0.0026 (8)
C2 0.0212 (8) 0.0210 (7) 0.0203 (9) −0.0011 (6) 0.0033 (6) −0.0004 (7)
C3 0.0199 (7) 0.0206 (7) 0.0204 (9) −0.0026 (6) 0.0032 (6) −0.0024 (7)
C4 0.0292 (9) 0.0258 (9) 0.0221 (9) −0.0028 (7) 0.0018 (8) −0.0061 (8)
C5 0.0302 (9) 0.0353 (11) 0.0184 (9) −0.0058 (7) −0.0024 (7) 0.0002 (9)
C6 0.0258 (8) 0.0303 (9) 0.0259 (9) 0.0005 (7) −0.0035 (8) 0.0042 (8)
C7 0.0266 (8) 0.0293 (9) 0.0254 (9) −0.0036 (7) −0.0032 (8) −0.0030 (8)
C8 0.0293 (9) 0.0428 (12) 0.0374 (13) 0.0037 (9) −0.0127 (9) −0.0071 (11)
C9 0.0351 (11) 0.0705 (16) 0.0207 (11) −0.0072 (11) −0.0024 (8) −0.0025 (11)
N1 0.0231 (7) 0.0264 (8) 0.0229 (8) 0.0012 (6) 0.0001 (6) −0.0067 (7)
N2 0.0238 (8) 0.0239 (7) 0.0284 (9) 0.0024 (6) −0.0016 (6) −0.0002 (7)
S1 0.0242 (2) 0.0266 (2) 0.0246 (2) 0.00703 (13) −0.0007 (2) −0.0048 (2)

Geometric parameters (Å, º)

C1—N1 1.291 (2) C6—N2 1.334 (3)
C1—C7 1.508 (3) C6—H6 0.9500
C1—S1 1.7585 (19) C7—C8 1.524 (3)
C2—C4 1.383 (3) C7—C9 1.530 (3)
C2—C3 1.411 (2) C7—H7 1.0000
C2—S1 1.7325 (19) C8—H8A 0.9800
C3—N2 1.342 (2) C8—H8B 0.9800
C3—N1 1.380 (2) C8—H8C 0.9800
C4—C5 1.388 (3) C9—H9A 0.9800
C4—H4 0.9500 C9—H9B 0.9800
C5—C6 1.400 (3) C9—H9C 0.9800
C5—H5 0.9500
N1—C1—C7 122.91 (17) C8—C7—C9 111.1 (2)
N1—C1—S1 115.73 (15) C1—C7—H7 107.6
C7—C1—S1 121.36 (14) C8—C7—H7 107.6
C4—C2—C3 120.08 (17) C9—C7—H7 107.6
C4—C2—S1 130.92 (14) C7—C8—H8A 109.5
C3—C2—S1 108.98 (14) C7—C8—H8B 109.5
N2—C3—N1 121.16 (16) H8A—C8—H8B 109.5
N2—C3—C2 123.53 (18) C7—C8—H8C 109.5
N1—C3—C2 115.30 (16) H8A—C8—H8C 109.5
C2—C4—C5 116.51 (17) H8B—C8—H8C 109.5
C2—C4—H4 121.7 C7—C9—H9A 109.5
C5—C4—H4 121.7 C7—C9—H9B 109.5
C4—C5—C6 119.6 (2) H9A—C9—H9B 109.5
C4—C5—H5 120.2 C7—C9—H9C 109.5
C6—C5—H5 120.2 H9A—C9—H9C 109.5
N2—C6—C5 124.73 (18) H9B—C9—H9C 109.5
N2—C6—H6 117.6 C1—N1—C3 110.99 (16)
C5—C6—H6 117.6 C6—N2—C3 115.54 (16)
C1—C7—C8 112.90 (18) C2—S1—C1 89.00 (9)
C1—C7—C9 109.85 (15)
C4—C2—C3—N2 −0.3 (3) C7—C1—N1—C3 −179.88 (16)
S1—C2—C3—N2 −179.06 (14) S1—C1—N1—C3 0.6 (2)
C4—C2—C3—N1 178.46 (16) N2—C3—N1—C1 178.62 (17)
S1—C2—C3—N1 −0.3 (2) C2—C3—N1—C1 −0.1 (2)
C3—C2—C4—C5 0.4 (3) C5—C6—N2—C3 0.0 (3)
S1—C2—C4—C5 178.89 (15) N1—C3—N2—C6 −178.61 (17)
C2—C4—C5—C6 −0.4 (3) C2—C3—N2—C6 0.1 (3)
C4—C5—C6—N2 0.2 (3) C4—C2—S1—C1 −178.11 (19)
N1—C1—C7—C8 169.47 (19) C3—C2—S1—C1 0.50 (14)
S1—C1—C7—C8 −11.0 (2) N1—C1—S1—C2 −0.64 (15)
N1—C1—C7—C9 −65.9 (3) C7—C1—S1—C2 179.79 (16)
S1—C1—C7—C9 113.64 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N1i 0.95 2.51 3.391 (2) 153

Symmetry code: (i) −x+1/2, y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2329).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  3. El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.
  4. El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856.
  7. Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95–99. [DOI] [PubMed]
  8. Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631–637.
  9. Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.
  13. Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.
  14. Thomae, D., Perspicace, E., Hesse, S., Kirsch, G. & Seck, P. (2008). Tetrahedron, 64, 9309–9314.
  15. Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015006039/zs2329sup1.cif

e-71-0o272-sup1.cif (117.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006039/zs2329Isup2.hkl

e-71-0o272-Isup2.hkl (75.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006039/zs2329Isup3.cml

9 10 2 . DOI: 10.1107/S2056989015006039/zs2329fig1.tif

A mol­ecule of C9H10N2S with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

c . DOI: 10.1107/S2056989015006039/zs2329fig2.tif

Crystal structure packing viewed down the c axis with C—H⋯N inter­actions shown as dotted lines.

CCDC reference: 1056012

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES