Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):o369–o370. doi: 10.1107/S2056989015008191

Crystal structure of 1-{3-acetyl-2-(4-chloro­phen­yl)-6-hy­droxy-4-[(2-hy­droxy­prop­yl)amino]-6-methyl­cyclo­hex-3-en-1-yl}ethanone

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Antar A Abdelhamid e, Mustafa R Albayati f,*
PMCID: PMC4420087  PMID: 25995954

Abstract

In the title compound, C20H26ClNO4, the central cyclo­hexene ring adopts an approximate envelope conformation with the C atom binding with the hy­droxy group at the tip of the flap. There is an intramolecular N—H⋯O hydrogen bond generating an S(6) ring motif. In the crystal, classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules, forming a three-dimensional supra­molecular architecture. The crystal structure was refined as a four-component twin.

Keywords: crystal structure; 1,3-diketones; hydrogen bonding

Related literature  

For use of 1,3-diketones as building block in mutasynthesis and as chelating ligands, see: Bergé et al. (1997); Nagpal et al. (2001); Simoni et al. (1999); Garnovskii et al. (1999).graphic file with name e-71-0o369-scheme1.jpg

Experimental  

Crystal data  

  • C20H26ClNO4

  • M r = 379.87

  • Monoclinic, Inline graphic

  • a = 5.5490 (2) Å

  • b = 8.7759 (3) Å

  • c = 19.4428 (6) Å

  • β = 92.815 (2)°

  • V = 945.67 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.98 mm−1

  • T = 150 K

  • 0.26 × 0.18 × 0.02 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.63, T max = 0.97

  • 7079 measured reflections

  • 7079 independent reflections

  • 6072 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.144

  • S = 1.06

  • 7079 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: The crystal is a non-merohedral twin with each component being a racemic twin as well.

  • Absolute structure parameter: 0.033 (15)

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008191/xu5848sup1.cif

e-71-0o369-sup1.cif (696.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008191/xu5848Isup2.hkl

e-71-0o369-Isup2.hkl (387.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008191/xu5848Isup3.cml

. DOI: 10.1107/S2056989015008191/xu5848fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular N—H⋯O hydrogen bond is shown as a dotted line.

a . DOI: 10.1107/S2056989015008191/xu5848fig2.tif

Packing viewed down the a axis. O—H⋯O hydrogen bonds are shown as red dotted lines.

. DOI: 10.1107/S2056989015008191/xu5848fig3.tif

Packing showing the "three-point" C—H⋯O inter­actions as black dotted lines.

CCDC reference: 1061756

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2AO3i 0.84 1.97 2.811(6) 174
O3H3AO4i 0.84 1.95 2.768(6) 164
N1H1BO4 0.91 1.82 2.601(7) 142
C2H2O1ii 1.00 2.61 3.488(6) 147
C4H4AO1ii 0.99 2.58 3.456(7) 147
C4H4AO2ii 0.99 2.57 3.347(6) 136
C14H14ACl1iii 0.98 2.98 3.818(7) 145
C15H15BO1ii 0.98 2.62 3.473(8) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

1,3-Diketones are important building block, and their usefulness in cyclic and heterocyclic preparations has been largely illustrated (Bergé et al., 1997; Nagpal et al., 2001; Simoni et al., 1999). Also, 1,3-diketones are key structural units in many chelating ligand for lanthanide and transition metals (Garnovskii et al., 1999). In this concept, we report in this study the synthesis and crystal structure study of the title compound.

In the title molecule, the central six-membered ring adopts an approximate envelope conformation with C3 at the tip of the "flap" (Fig. 1). A Cremer-Pople puckering analysis gives a puckering amplitude Q = 0.530 (6) Å and additional parameters θ = 58.7 (6)° and φ = 109.3 (8)°. The conformation of the 2-hydroxypropylamino side chain is determined in part by the intramolecular N1—H1B···O4 hydrogen bonds. Two intermolecular hydrogen bonds (O2—H2A···O3i and O3—H3A···O4i (i: 1 - x, 1/2 + y, 1 - z) form a unit which is propagated by the 21 axis using further pairs of these hydrogen bonds to generate layers approximately parallel to (101) (Fig. 2). In addition, there are intermolecular "three point" C—H···O interactions between the central cyclohexene ring and O1 parallel to the a axis (Fig. 3).

S2. Experimental

A mixture of 4-chlorobenzaldehyde (1 mmol, 140 mg), 1-aminopropan-2-ol (1 mmol, 75 mg) and pentane-2,4-dione (1 mmol, 100 mg) in 30 ml e thanol was refluxed for 2 h. The resulting solid product was collected, dried under vacuum and recrystallized from ethanol to afford colourless crystals in excelent yield (92%).

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stages of the refinement it became evident that not only was the crystal twinned by a 180° rotation about the c* axis but also each of these components was a racemic twin. Consequently, the model was finally refined as a 4-component twin.

Figures

Fig. 1.

Fig. 1.

The title molecule with labeling scheme and 50% probability ellipsoids. The intramolecular N—H···O hydrogen bond is shown as a dotted line.

Fig. 2.

Fig. 2.

Packing viewed down the a axis. O—H···O hydrogen bonds are shown as red dotted lines.

Fig. 3.

Fig. 3.

Packing showing the "three-point" C—H···O interactions as black dotted lines.

Crystal data

C20H26ClNO4 F(000) = 404
Mr = 379.87 Dx = 1.323 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 5.5490 (2) Å Cell parameters from 5259 reflections
b = 8.7759 (3) Å θ = 4.6–72.4°
c = 19.4428 (6) Å µ = 1.98 mm1
β = 92.815 (2)° T = 150 K
V = 945.67 (6) Å3 Plate, colourless
Z = 2 0.26 × 0.18 × 0.02 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 7079 measured reflections
Radiation source: INCOATEC IµS micro–focus source 7079 independent reflections
Mirror monochromator 6072 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 θmax = 72.5°, θmin = 4.6°
ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −10→10
Tmin = 0.63, Tmax = 0.97 l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.3038P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
7079 reflections Δρmax = 0.39 e Å3
242 parameters Δρmin = −0.38 e Å3
1 restraint Absolute structure: The crystal is a non-merohedral twin with each component being a racemic twin as well.
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.033 (15)

Special details

Experimental. Analysis of 1837 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stages of the refinement it became evident that not only was the crystal twinned by a 180° rotation about the c* axis but also each of these components was a racemic twin. Consequently, the model was finally refined as a 4-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.6307 (4) 0.0955 (2) 1.00356 (9) 0.0579 (6)
O1 1.1051 (7) 0.7167 (5) 0.8132 (2) 0.0376 (11)
O2 0.8526 (6) 0.7591 (5) 0.6729 (2) 0.0320 (10)
H2A 0.8220 0.8176 0.6394 0.038*
O3 0.2467 (7) 0.4376 (5) 0.4451 (2) 0.0332 (10)
H3A 0.2914 0.5269 0.4366 0.040*
O4 0.6555 (7) 0.2231 (5) 0.6072 (2) 0.0341 (10)
N1 0.3747 (8) 0.4595 (7) 0.5929 (2) 0.0312 (12)
H1B 0.4164 0.3602 0.5871 0.037*
C1 0.7897 (9) 0.4895 (7) 0.7530 (3) 0.0248 (12)
H1 0.9672 0.4963 0.7468 0.030*
C2 0.7024 (9) 0.6487 (6) 0.7741 (3) 0.0251 (12)
H2 0.5523 0.6351 0.7998 0.030*
C3 0.6400 (9) 0.7509 (7) 0.7111 (3) 0.0264 (13)
C4 0.4393 (9) 0.6728 (7) 0.6691 (3) 0.0282 (13)
H4A 0.2917 0.6734 0.6957 0.034*
H4B 0.4045 0.7322 0.6265 0.034*
C5 0.4944 (10) 0.5119 (8) 0.6498 (3) 0.0288 (14)
C6 0.6716 (9) 0.4266 (7) 0.6858 (3) 0.0256 (12)
C7 0.7523 (10) 0.3846 (7) 0.8148 (3) 0.0255 (12)
C8 0.5421 (11) 0.3006 (8) 0.8207 (3) 0.0337 (14)
H8 0.4212 0.3047 0.7845 0.040*
C9 0.5031 (12) 0.2112 (8) 0.8778 (3) 0.0385 (15)
H9 0.3601 0.1523 0.8802 0.046*
C10 0.6767 (12) 0.2094 (8) 0.9311 (3) 0.0390 (16)
C11 0.8864 (12) 0.2898 (8) 0.9274 (3) 0.0407 (17)
H11 1.0056 0.2856 0.9641 0.049*
C12 0.9244 (11) 0.3778 (8) 0.8695 (3) 0.0361 (15)
H12 1.0699 0.4341 0.8670 0.043*
C13 0.8910 (10) 0.7249 (7) 0.8224 (3) 0.0292 (13)
C14 0.8022 (13) 0.8077 (9) 0.8835 (3) 0.0424 (17)
H14A 0.7646 0.7340 0.9193 0.064*
H14B 0.6566 0.8654 0.8698 0.064*
H14C 0.9274 0.8778 0.9016 0.064*
C15 0.5570 (10) 0.9097 (8) 0.7316 (3) 0.0342 (14)
H15A 0.6861 0.9602 0.7592 0.051*
H15B 0.4131 0.9011 0.7586 0.051*
H15C 0.5183 0.9698 0.6900 0.051*
C16 0.1783 (11) 0.5437 (8) 0.5557 (3) 0.0362 (15)
H16A 0.2408 0.6421 0.5392 0.043*
H16B 0.0486 0.5657 0.5875 0.043*
C17 0.0785 (11) 0.4540 (9) 0.4965 (3) 0.0403 (17)
H17 0.0439 0.3496 0.5140 0.048*
C18 −0.1597 (10) 0.5198 (8) 0.4682 (3) 0.0367 (15)
H18A −0.1334 0.6231 0.4510 0.055*
H18B −0.2745 0.5234 0.5049 0.055*
H18C −0.2249 0.4554 0.4305 0.055*
C19 0.7529 (10) 0.2866 (7) 0.6595 (3) 0.0278 (13)
C20 0.9775 (10) 0.2105 (8) 0.6928 (3) 0.0302 (13)
H20A 0.9942 0.1077 0.6739 0.045*
H20B 0.9617 0.2042 0.7427 0.045*
H20C 1.1205 0.2709 0.6831 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0853 (14) 0.0563 (11) 0.0340 (8) 0.0254 (10) 0.0201 (8) 0.0185 (9)
O1 0.025 (2) 0.048 (3) 0.039 (2) −0.007 (2) −0.0011 (17) −0.002 (2)
O2 0.0218 (19) 0.039 (3) 0.035 (2) 0.0045 (18) 0.0055 (16) 0.009 (2)
O3 0.028 (2) 0.040 (3) 0.032 (2) 0.001 (2) −0.0011 (16) −0.002 (2)
O4 0.034 (2) 0.039 (3) 0.029 (2) 0.003 (2) −0.0077 (16) −0.004 (2)
N1 0.023 (2) 0.044 (3) 0.026 (2) 0.006 (2) −0.0041 (18) −0.001 (2)
C1 0.018 (2) 0.030 (3) 0.026 (3) 0.000 (2) −0.002 (2) −0.003 (2)
C2 0.018 (2) 0.030 (3) 0.027 (3) 0.000 (2) 0.003 (2) 0.001 (3)
C3 0.020 (3) 0.031 (3) 0.029 (3) 0.001 (2) 0.003 (2) 0.005 (3)
C4 0.019 (3) 0.038 (4) 0.027 (3) 0.002 (2) 0.000 (2) 0.004 (3)
C5 0.020 (3) 0.047 (4) 0.020 (3) 0.002 (3) 0.004 (2) 0.002 (3)
C6 0.020 (2) 0.032 (3) 0.025 (3) 0.001 (2) −0.001 (2) 0.005 (3)
C7 0.026 (3) 0.027 (3) 0.023 (3) 0.008 (2) −0.002 (2) 0.000 (2)
C8 0.028 (3) 0.040 (4) 0.032 (3) 0.003 (3) −0.001 (2) 0.011 (3)
C9 0.038 (3) 0.036 (4) 0.042 (4) 0.007 (3) 0.007 (3) 0.013 (3)
C10 0.049 (4) 0.041 (4) 0.028 (3) 0.014 (3) 0.010 (3) 0.002 (3)
C11 0.052 (4) 0.041 (4) 0.028 (3) 0.012 (3) −0.011 (3) 0.001 (3)
C12 0.036 (3) 0.043 (4) 0.029 (3) −0.001 (3) −0.007 (2) 0.000 (3)
C13 0.029 (3) 0.030 (3) 0.028 (3) −0.005 (3) −0.001 (2) 0.006 (3)
C14 0.048 (4) 0.045 (4) 0.034 (3) −0.001 (3) 0.002 (3) −0.009 (3)
C15 0.029 (3) 0.038 (4) 0.036 (3) 0.007 (3) 0.003 (2) 0.007 (3)
C16 0.027 (3) 0.046 (4) 0.035 (3) 0.011 (3) −0.008 (2) −0.001 (3)
C17 0.029 (3) 0.057 (5) 0.034 (3) 0.006 (3) 0.000 (3) 0.008 (3)
C18 0.022 (3) 0.049 (4) 0.039 (4) −0.002 (3) −0.003 (2) 0.008 (3)
C19 0.025 (3) 0.036 (3) 0.022 (3) 0.000 (3) 0.001 (2) 0.001 (3)
C20 0.025 (3) 0.035 (3) 0.030 (3) 0.003 (3) 0.001 (2) −0.003 (3)

Geometric parameters (Å, º)

Cl1—C10 1.756 (7) C8—H8 0.9500
O1—C13 1.212 (7) C9—C10 1.381 (9)
O2—C3 1.427 (6) C9—H9 0.9500
O2—H2A 0.8400 C10—C11 1.366 (10)
O3—C17 1.407 (7) C11—C12 1.390 (9)
O3—H3A 0.8404 C11—H11 0.9500
O4—C19 1.257 (7) C12—H12 0.9500
N1—C5 1.342 (7) C13—C14 1.497 (9)
N1—C16 1.477 (7) C14—H14A 0.9800
N1—H1B 0.9100 C14—H14B 0.9800
C1—C6 1.534 (7) C14—H14C 0.9800
C1—C7 1.537 (8) C15—H15A 0.9800
C1—C2 1.541 (8) C15—H15B 0.9800
C1—H1 1.0000 C15—H15C 0.9800
C2—C13 1.526 (7) C16—C17 1.480 (9)
C2—C3 1.543 (8) C16—H16A 0.9900
C2—H2 1.0000 C16—H16B 0.9900
C3—C4 1.513 (8) C17—C18 1.521 (8)
C3—C15 1.526 (9) C17—H17 1.0000
C4—C5 1.497 (9) C18—H18A 0.9800
C4—H4A 0.9900 C18—H18B 0.9800
C4—H4B 0.9900 C18—H18C 0.9800
C5—C6 1.396 (8) C19—C20 1.530 (8)
C6—C19 1.414 (9) C20—H20A 0.9800
C7—C8 1.389 (8) C20—H20B 0.9800
C7—C12 1.394 (8) C20—H20C 0.9800
C8—C9 1.385 (9)
C3—O2—H2A 107.1 C10—C11—H11 120.2
C17—O3—H3A 104.9 C12—C11—H11 120.2
C5—N1—C16 123.8 (6) C11—C12—C7 121.0 (6)
C5—N1—H1B 108.2 C11—C12—H12 119.5
C16—N1—H1B 127.2 C7—C12—H12 119.5
C6—C1—C7 112.5 (5) O1—C13—C14 120.7 (5)
C6—C1—C2 115.2 (5) O1—C13—C2 122.0 (5)
C7—C1—C2 106.1 (4) C14—C13—C2 117.3 (5)
C6—C1—H1 107.6 C13—C14—H14A 109.5
C7—C1—H1 107.6 C13—C14—H14B 109.5
C2—C1—H1 107.6 H14A—C14—H14B 109.5
C13—C2—C1 110.3 (4) C13—C14—H14C 109.5
C13—C2—C3 110.7 (5) H14A—C14—H14C 109.5
C1—C2—C3 112.2 (5) H14B—C14—H14C 109.5
C13—C2—H2 107.8 C3—C15—H15A 109.5
C1—C2—H2 107.8 C3—C15—H15B 109.5
C3—C2—H2 107.8 H15A—C15—H15B 109.5
O2—C3—C4 110.3 (5) C3—C15—H15C 109.5
O2—C3—C15 111.0 (5) H15A—C15—H15C 109.5
C4—C3—C15 109.3 (5) H15B—C15—H15C 109.5
O2—C3—C2 106.4 (4) N1—C16—C17 110.7 (5)
C4—C3—C2 107.2 (5) N1—C16—H16A 109.5
C15—C3—C2 112.6 (5) C17—C16—H16A 109.5
C5—C4—C3 114.2 (5) N1—C16—H16B 109.5
C5—C4—H4A 108.7 C17—C16—H16B 109.5
C3—C4—H4A 108.7 H16A—C16—H16B 108.1
C5—C4—H4B 108.7 O3—C17—C16 111.8 (5)
C3—C4—H4B 108.7 O3—C17—C18 112.2 (5)
H4A—C4—H4B 107.6 C16—C17—C18 111.4 (6)
N1—C5—C6 122.5 (6) O3—C17—H17 107.0
N1—C5—C4 115.5 (5) C16—C17—H17 107.0
C6—C5—C4 121.8 (5) C18—C17—H17 107.0
C5—C6—C19 120.8 (5) C17—C18—H18A 109.5
C5—C6—C1 119.7 (6) C17—C18—H18B 109.5
C19—C6—C1 119.4 (5) H18A—C18—H18B 109.5
C8—C7—C12 117.4 (6) C17—C18—H18C 109.5
C8—C7—C1 121.9 (5) H18A—C18—H18C 109.5
C12—C7—C1 120.5 (5) H18B—C18—H18C 109.5
C9—C8—C7 122.1 (6) O4—C19—C6 123.1 (5)
C9—C8—H8 118.9 O4—C19—C20 117.2 (5)
C7—C8—H8 118.9 C6—C19—C20 119.6 (5)
C10—C9—C8 118.5 (6) C19—C20—H20A 109.5
C10—C9—H9 120.7 C19—C20—H20B 109.5
C8—C9—H9 120.7 H20A—C20—H20B 109.5
C11—C10—C9 121.2 (6) C19—C20—H20C 109.5
C11—C10—Cl1 119.7 (5) H20A—C20—H20C 109.5
C9—C10—Cl1 119.0 (5) H20B—C20—H20C 109.5
C10—C11—C12 119.6 (6)
C6—C1—C2—C13 −157.7 (5) C6—C1—C7—C8 −34.3 (7)
C7—C1—C2—C13 77.1 (5) C2—C1—C7—C8 92.5 (6)
C6—C1—C2—C3 −33.8 (6) C6—C1—C7—C12 149.6 (5)
C7—C1—C2—C3 −159.0 (4) C2—C1—C7—C12 −83.6 (6)
C13—C2—C3—O2 66.3 (6) C12—C7—C8—C9 −0.9 (9)
C1—C2—C3—O2 −57.4 (6) C1—C7—C8—C9 −177.1 (6)
C13—C2—C3—C4 −175.7 (4) C7—C8—C9—C10 1.8 (10)
C1—C2—C3—C4 60.7 (6) C8—C9—C10—C11 −2.1 (10)
C13—C2—C3—C15 −55.5 (6) C8—C9—C10—Cl1 −179.6 (5)
C1—C2—C3—C15 −179.1 (5) C9—C10—C11—C12 1.4 (10)
O2—C3—C4—C5 61.4 (6) Cl1—C10—C11—C12 178.9 (5)
C15—C3—C4—C5 −176.4 (5) C10—C11—C12—C7 −0.4 (10)
C2—C3—C4—C5 −54.1 (6) C8—C7—C12—C11 0.1 (9)
C16—N1—C5—C6 176.8 (6) C1—C7—C12—C11 176.5 (6)
C16—N1—C5—C4 −7.7 (8) C1—C2—C13—O1 41.0 (7)
C3—C4—C5—N1 −154.8 (5) C3—C2—C13—O1 −83.7 (7)
C3—C4—C5—C6 20.7 (7) C1—C2—C13—C14 −137.3 (6)
N1—C5—C6—C19 7.2 (9) C3—C2—C13—C14 98.0 (6)
C4—C5—C6—C19 −168.0 (5) C5—N1—C16—C17 −178.4 (6)
N1—C5—C6—C1 −176.1 (5) N1—C16—C17—O3 −67.3 (7)
C4—C5—C6—C1 8.7 (8) N1—C16—C17—C18 166.3 (5)
C7—C1—C6—C5 120.3 (6) C5—C6—C19—O4 −7.9 (9)
C2—C1—C6—C5 −1.5 (8) C1—C6—C19—O4 175.4 (5)
C7—C1—C6—C19 −63.0 (7) C5—C6—C19—C20 168.7 (5)
C2—C1—C6—C19 175.2 (5) C1—C6—C19—C20 −7.9 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O3i 0.84 1.97 2.811 (6) 174
O3—H3A···O4i 0.84 1.95 2.768 (6) 164
N1—H1B···O4 0.91 1.82 2.601 (7) 142
C2—H2···O1ii 1.00 2.61 3.488 (6) 147
C4—H4A···O1ii 0.99 2.58 3.456 (7) 147
C4—H4A···O2ii 0.99 2.57 3.347 (6) 136
C14—H14A···Cl1iii 0.98 2.98 3.818 (7) 145
C15—H15B···O1ii 0.98 2.62 3.473 (8) 146

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5848).

References

  1. Bergé, J. P., Bourgougnon, N., Carbonnelle, D., Le Bert, V., Tomasoni, C., Durand, P. & Roussakis, C. (1997). Anticancer Res. 17, 2115–2120. [PubMed]
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Garnovskii, A. D., Kharisov, B. I., Blanco, L. M., Garnovskii, D. A., Burlov, A. S., Vasilchenko, I. S. & Bondarenko, G. I. (1999). J. Coord. Chem. 46, 365–395.
  5. Nagpal, A., Unny, R. & Joshi, Y. C. (2001). Heterocycl. Commun. 32, 589–592.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Simoni, D., Invidiata, F. P., Rondanin, R., Grimaudo, S., Cannizzo, G., Barbusca, E., Porretto, F., D’Alessandro, N. & Tolomeo, M. (1999). J. Med. Chem. 42, 4961–4969. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008191/xu5848sup1.cif

e-71-0o369-sup1.cif (696.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008191/xu5848Isup2.hkl

e-71-0o369-Isup2.hkl (387.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008191/xu5848Isup3.cml

. DOI: 10.1107/S2056989015008191/xu5848fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular N—H⋯O hydrogen bond is shown as a dotted line.

a . DOI: 10.1107/S2056989015008191/xu5848fig2.tif

Packing viewed down the a axis. O—H⋯O hydrogen bonds are shown as red dotted lines.

. DOI: 10.1107/S2056989015008191/xu5848fig3.tif

Packing showing the "three-point" C—H⋯O inter­actions as black dotted lines.

CCDC reference: 1061756

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES