Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 18;71(Pt 5):o316. doi: 10.1107/S2056989015007203

Crystal structure of (E)-pent-2-enoic acid

Tim Peppel a,*, Marcel Sonneck a, Anke Spannenberg a, Sebastian Wohlrab a
PMCID: PMC4420089  PMID: 25995924

Abstract

The mol­ecule of the title compound, C5H8O2, a low-melting α,β-unsaturated carb­oxy­lic acid, is essentially planar [maximum displacement = 0.0239 (13) Å]. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯O hydrogen bonds.

Keywords: crystal structure, hydrogen bond, dimer, unsaturated carb­oxy­lic acid

Related literature  

For the synthesis of unsaturated carb­oxy­lic acids including the title compound, see: Shabtai et al. (1981); Gastaminza et al. (1984); Outurquin & Paulmier (1989). For crystal structure determinations of acrylic acid, see: Higgs & Sass (1963); Chatani et al. (1963); Boese et al. (1999); Oswald & Urquhart (2011). For the structure of crotonic acid, see: Shimizu et al. (1974). For the structure of related hexenoic acid cocrystals, see: Aakeröy et al. (2003); Stanton & Bak (2008).graphic file with name e-71-0o316-scheme1.jpg

Experimental  

Crystal data  

  • C5H8O2

  • M r = 100.11

  • Triclinic, Inline graphic

  • a = 6.7336 (13) Å

  • b = 6.7821 (13) Å

  • c = 7.2349 (14) Å

  • α = 67.743 (2)°

  • β = 75.518 (2)°

  • γ = 64.401 (2)°

  • V = 274.29 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.51 × 0.35 × 0.27 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.81, T max = 0.97

  • 7544 measured reflections

  • 1323 independent reflections

  • 1122 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.113

  • S = 1.10

  • 1323 reflections

  • 69 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014; software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015007203/rz5155sup1.cif

e-71-0o316-sup1.cif (239.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007203/rz5155Isup2.hkl

e-71-0o316-Isup2.hkl (73KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007203/rz5155Isup3.cml

. DOI: 10.1107/S2056989015007203/rz5155fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

ORTEP . DOI: 10.1107/S2056989015007203/rz5155fig2.tif

ORTEP representation of a dimer formed by inter­molecular O—H⋯O hydrogen bonds.

CCDC reference: 1058870

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O2i 0.95(2) 1.69(2) 2.6322(13) 173.3(19)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank P. Thiele (University of Rostock) for DSC measurements and Professor Dr J. G. de Vries (LIKAT) for helpful support.

supplementary crystallographic information

S1. Synthesis and crystallization

Malonic acid (24.8 g, 237.8 mmol, 1eq) was dissolved in dry pyridine (37.6 g, 475.7 mmol, 2 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Propanal (13.8 g, 240.2 mmol, 1 eq) was then added in one portion and the resulting clear solution further stirred for 72 h at room temperature under argon. Afterwards, the resulting light yellow to orange solution was brought to an acidic pH value by adding phospho­ric acid at 0°C (42.5 wt.-%, 582.7 mmol, 2.45 eq). The resulting two layers were extracted three times with 150 mL portions of ethyl acetate and reduced to a volume of ca. 150 mL. To remove impurities from aldol condensation the raw acid was converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (18.9 g, 178.4 mmol, 0.75 eq in 200 mL). After stirring for 30 minutes the water phase was separated und extracted three times with 150 mL portions of ethyl acetate. The water phase was then acidified with concentrated hydro­chloric acid (35.2 g, 356.7 mmol, 1.5 eq), the organic phase was separated and the water phase was again extracted three times with 150 mL portions of ethyl acetate. The combined organic phases were dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product was further purified by distillation in vacuo yielding the product in purity >99% (GC). M. p. 10°C. 1H NMR (400 MHz, CDCl3): δ = 12.35 (br s, 1H, OH); 7.14 (dt, 3J = 15.6 Hz, 3J = 6.3 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.7 Hz, 1H, -CH-); 2.30-2.21 (m, 2H, -CH2-); 1.08 (t, 3J = 7.4 Hz, 3H, -CH3-). 13C NMR (100 MHz, CDCl3): δ = 172.69 (CO); 153.77 (CH); 119.76 (CH); 25.54 (CH2); 21.10 (CH3). MS (EI, 70 eV): m/z = 100 (M+, 50), 83 (13), 82 (23), 81 (10), 58 (11), 57 (17), 56 (23), 55 (100), 54 (43), 53 (35), 52 (12), 51 (25), 50 (28), 45 (77), 41 (36), 40 (13), 39 (99), 38 (25), 37 (11), 29 (61). HRMS (ESI-TOF/MS): calculated for C5H8O2 (M+) 99.04515, found 99.04529. Elemental analysis for C5H8O2 % (calc.): C 59.99 (59.98); H 8.05 (8.05). Suitable single crystals were grown by slow evaporation of an ethano­lic solution at -30 °C over one week.

S2. Refinement

The carb­oxy­lic H atom could be found in a difference Fourier map and was refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. A rotating model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

ORTEP representation of a dimer formed by intermolecular O—H···O hydrogen bonds.

Crystal data

C5H8O2 Z = 2
Mr = 100.11 F(000) = 108
Triclinic, P1 Dx = 1.212 Mg m3
a = 6.7336 (13) Å Mo Kα radiation, λ = 0.71073 Å
b = 6.7821 (13) Å Cell parameters from 4399 reflections
c = 7.2349 (14) Å θ = 3.1–28.7°
α = 67.743 (2)° µ = 0.09 mm1
β = 75.518 (2)° T = 150 K
γ = 64.401 (2)° Prism, colourless
V = 274.29 (9) Å3 0.51 × 0.35 × 0.27 mm

Data collection

Bruker APEXII CCD diffractometer 1323 independent reflections
Radiation source: fine-focus sealed tube 1122 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.026
φ and ω scans θmax = 28.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −8→8
Tmin = 0.81, Tmax = 0.97 k = −8→8
7544 measured reflections l = −9→9

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0602P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
1323 reflections Δρmax = 0.36 e Å3
69 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.36613 (18) 0.77456 (19) 0.59878 (16) 0.0284 (3)
C2 0.25933 (18) 0.6065 (2) 0.66526 (16) 0.0295 (3)
H2 0.1507 0.6289 0.5893 0.035*
C3 0.31028 (18) 0.4243 (2) 0.82842 (16) 0.0290 (3)
H3 0.4190 0.4066 0.9018 0.035*
C4 0.2111 (2) 0.2446 (2) 0.90640 (17) 0.0323 (3)
H4A 0.1414 0.2401 1.0450 0.039*
H4B 0.3320 0.0930 0.9135 0.039*
C5 0.0389 (2) 0.2791 (2) 0.78294 (19) 0.0372 (3)
H5A −0.0864 0.4244 0.7812 0.056*
H5B −0.0133 0.1517 0.8430 0.056*
H5C 0.1055 0.2834 0.6452 0.056*
O1 0.30172 (15) 0.93766 (15) 0.42861 (12) 0.0357 (3)
O2 0.50223 (14) 0.76619 (15) 0.69113 (12) 0.0361 (3)
H1 0.376 (3) 1.039 (4) 0.395 (3) 0.071 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0277 (5) 0.0275 (6) 0.0251 (5) −0.0060 (4) −0.0070 (4) −0.0056 (4)
C2 0.0270 (5) 0.0326 (6) 0.0272 (5) −0.0093 (5) −0.0077 (4) −0.0066 (4)
C3 0.0265 (5) 0.0325 (6) 0.0257 (5) −0.0086 (4) −0.0067 (4) −0.0071 (4)
C4 0.0321 (6) 0.0332 (6) 0.0267 (5) −0.0121 (5) −0.0087 (4) −0.0010 (4)
C5 0.0378 (6) 0.0382 (7) 0.0355 (6) −0.0177 (5) −0.0135 (5) −0.0013 (5)
O1 0.0406 (5) 0.0339 (5) 0.0295 (4) −0.0147 (4) −0.0153 (3) 0.0015 (3)
O2 0.0402 (5) 0.0345 (5) 0.0332 (5) −0.0155 (4) −0.0166 (4) −0.0005 (3)

Geometric parameters (Å, º)

C1—O2 1.2337 (14) C4—C5 1.5239 (16)
C1—O1 1.3223 (13) C4—H4A 0.9900
C1—C2 1.4723 (16) C4—H4B 0.9900
C2—C3 1.3301 (16) C5—H5A 0.9800
C2—H2 0.9500 C5—H5B 0.9800
C3—C4 1.4981 (16) C5—H5C 0.9800
C3—H3 0.9500 O1—H1 0.95 (2)
O2—C1—O1 122.75 (11) C5—C4—H4A 108.4
O2—C1—C2 123.99 (10) C3—C4—H4B 108.4
O1—C1—C2 113.26 (10) C5—C4—H4B 108.4
C3—C2—C1 122.03 (10) H4A—C4—H4B 107.5
C3—C2—H2 119.0 C4—C5—H5A 109.5
C1—C2—H2 119.0 C4—C5—H5B 109.5
C2—C3—C4 125.63 (10) H5A—C5—H5B 109.5
C2—C3—H3 117.2 C4—C5—H5C 109.5
C4—C3—H3 117.2 H5A—C5—H5C 109.5
C3—C4—C5 115.33 (10) H5B—C5—H5C 109.5
C3—C4—H4A 108.4 C1—O1—H1 108.7 (12)
O2—C1—C2—C3 −3.05 (19) C1—C2—C3—C4 −179.72 (10)
O1—C1—C2—C3 176.98 (11) C2—C3—C4—C5 0.45 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.95 (2) 1.69 (2) 2.6322 (13) 173.3 (19)

Symmetry code: (i) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5155).

References

  1. Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.
  2. Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55, IUC9900006.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.
  6. Gastaminza, A. E., Ferracutti, N. N. & Rodriguez, N. M. (1984). J. Org. Chem. 49, 3859–3860.
  7. Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661.
  8. Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507.
  9. Outurquin, F. & Paulmier, C. (1989). Synthesis, pp. 690–691.
  10. Shabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795–3802.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.
  14. Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015007203/rz5155sup1.cif

e-71-0o316-sup1.cif (239.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007203/rz5155Isup2.hkl

e-71-0o316-Isup2.hkl (73KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007203/rz5155Isup3.cml

. DOI: 10.1107/S2056989015007203/rz5155fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

ORTEP . DOI: 10.1107/S2056989015007203/rz5155fig2.tif

ORTEP representation of a dimer formed by inter­molecular O—H⋯O hydrogen bonds.

CCDC reference: 1058870

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES